Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1512.01631
Cited By
v1
v2
v3
v4 (latest)
Hierarchical Sparse Modeling: A Choice of Two Group Lasso Formulations
5 December 2015
Xiaohan Yan
Jacob Bien
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Hierarchical Sparse Modeling: A Choice of Two Group Lasso Formulations"
9 / 9 papers shown
Title
Structured Learning in Time-dependent Cox Models
Guanbo Wang
Yimin Lian
Archer Y. Yang
Robert W. Platt
Rui Wang
S. Perreault
M. Dorais
M. Schnitzer
111
3
0
21 Jun 2023
The non-overlapping statistical approximation to overlapping group lasso
Mingyu Qi
Tianxi Li
66
2
0
16 Nov 2022
Predicting Census Survey Response Rates With Parsimonious Additive Models and Structured Interactions
Shibal Ibrahim
P. Radchenko
E. Ben-David
Rahul Mazumder
472
2
0
24 Aug 2021
A likelihood-based approach for multivariate categorical response regression in high dimensions
Aaron J. Molstad
Adam J. Rothman
56
6
0
15 Jul 2020
Flexible co-data learning for high-dimensional prediction
M. V. van Nee
L. Wessels
M. A. van de Wiel
OOD
54
16
0
08 May 2020
LassoNet: A Neural Network with Feature Sparsity
Ismael Lemhadri
Feng Ruan
L. Abraham
Robert Tibshirani
178
131
0
29 Jul 2019
Testing for Conditional Mean Independence with Covariates through Martingale Difference Divergence
Ze Jin
Xiaohan Yan
David S. Matteson
58
1
0
17 May 2018
Graph-Guided Banding of the Covariance Matrix
Jacob Bien
72
6
0
01 Jun 2016
Learning Local Dependence In Ordered Data
Guo Yu
Jacob Bien
177
34
0
25 Apr 2016
1