ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1512.05006
  4. Cited By
BayesDB: A probabilistic programming system for querying the probable
  implications of data

BayesDB: A probabilistic programming system for querying the probable implications of data

15 December 2015
Vikash K. Mansinghka
R. Tibbetts
Jay Baxter
Pat Shafto
Baxter S. Eaves
ArXiv (abs)PDFHTML

Papers citing "BayesDB: A probabilistic programming system for querying the probable implications of data"

9 / 9 papers shown
Title
Automating Data Science: Prospects and Challenges
Automating Data Science: Prospects and Challenges
Tijl De Bie
Luc de Raedt
José Hernández-Orallo
Holger H. Hoos
Padhraic Smyth
C. Williams
114
38
0
12 May 2021
PClean: Bayesian Data Cleaning at Scale with Domain-Specific
  Probabilistic Programming
PClean: Bayesian Data Cleaning at Scale with Domain-Specific Probabilistic Programming
Alexander K. Lew
Monica Agrawal
David Sontag
Vikash K. Mansinghka
134
28
0
23 Jul 2020
Minority Class Oversampling for Tabular Data with Deep Generative Models
Minority Class Oversampling for Tabular Data with Deep Generative Models
R. Camino
Christian A. Hammerschmidt
R. State
51
2
0
07 May 2020
Human Factors in Model Interpretability: Industry Practices, Challenges,
  and Needs
Human Factors in Model Interpretability: Industry Practices, Challenges, and Needs
Sungsoo Ray Hong
Jessica Hullman
E. Bertini
HAI
87
195
0
23 Apr 2020
Probabilistic Programming with Densities in SlicStan: Efficient,
  Flexible and Deterministic
Probabilistic Programming with Densities in SlicStan: Efficient, Flexible and Deterministic
Maria I. Gorinova
Andrew D. Gordon
Charles Sutton
77
24
0
02 Nov 2018
An Introduction to Probabilistic Programming
An Introduction to Probabilistic Programming
Jan-Willem van de Meent
Brooks Paige
Hongseok Yang
Frank Wood
GP
88
200
0
27 Sep 2018
Database Learning: Toward a Database that Becomes Smarter Every Time
Database Learning: Toward a Database that Becomes Smarter Every Time
Yongjoo Park
Ahmad S. Tajik
Michael Cafarella
Barzan Mozafari
48
75
0
16 Mar 2017
Encapsulating models and approximate inference programs in probabilistic
  modules
Encapsulating models and approximate inference programs in probabilistic modules
Marco F. Cusumano-Towner
Vikash K. Mansinghka
TPM
19
2
0
14 Dec 2016
Detecting Dependencies in Sparse, Multivariate Databases Using
  Probabilistic Programming and Non-parametric Bayes
Detecting Dependencies in Sparse, Multivariate Databases Using Probabilistic Programming and Non-parametric Bayes
Feras A. Saad
Vikash K. Mansinghka
50
14
0
05 Nov 2016
1