Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1512.07797
Cited By
The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses
24 December 2015
Jiaqian Yu
Matthew Blaschko
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Lovász Hinge: A Novel Convex Surrogate for Submodular Losses"
8 / 8 papers shown
Title
Structured Prediction with Abstention via the Lovász Hinge
Jessie Finocchiaro
Rafael Frongillo
Enrique Nueve
29
0
0
09 May 2025
Trading off Consistency and Dimensionality of Convex Surrogates for the Mode
Enrique Nueve
Bo Waggoner
Dhamma Kimpara
Jessie Finocchiaro
44
1
0
16 Feb 2024
Jaccard Metric Losses: Optimizing the Jaccard Index with Soft Labels
Zifu Wang
Xuefei Ning
Matthew B. Blaschko
VLM
35
12
0
11 Feb 2023
UNet#: A UNet-like Redesigning Skip Connections for Medical Image Segmentation
Ledan Qian
Xiao Zhou
Yi Li
Zhongyi Hu
44
5
0
24 May 2022
The Structured Abstain Problem and the Lovász Hinge
Jessie Finocchiaro
Rafael Frongillo
Enrique Nueve
22
3
0
16 Mar 2022
Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Tom Eelbode
J. Bertels
Maxim Berman
Dirk Vandermeulen
F. Maes
R. Bisschops
Matthew B. Blaschko
30
255
0
26 Oct 2020
Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models
Vincent Le Guen
Nicolas Thome
AI4TS
32
134
0
19 Sep 2019
Yes, IoU loss is submodular - as a function of the mispredictions
Maxim Berman
Matthew B. Blaschko
Amal Rannen Triki
Jiaqian Yu
14
2
0
06 Sep 2018
1