ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1601.05585
342
321
v1v2v3v4v5v6v7 (latest)

Generalized optimal sub-pattern assignment metric

21 January 2016
Abu Sajana Rahmathullah
Á. F. García-Fernández
Lennart Svensson
ArXiv (abs)PDFHTML
Abstract

This paper presents the generalized optimal sub-pattern assignment (GOSPA) metric on the space of finite sets of targets. Compared to the well-established optimal sub-pattern assignment (OSPA) metric, GOSPA is unnormalized as a function of the cardinality and it penalizes cardinality errors differently, which enables us to express it as an optimisation over assignments instead of permutations. An important consequence of this is that GOSPA allows us to penalize localization errors for detected targets and the errors due to missed and false targets, as indicated by traditional multiple target tracking (MTT) performance measures, in a sound manner. In addition, we extend the GOSPA metric to the space of random finite sets, which is important to evaluate MTT algorithms via simulations in a rigorous way.

View on arXiv
Comments on this paper