ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1602.06929
  4. Cited By
Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample
  Guarantees for Oja's Algorithm

Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm

22 February 2016
Prateek Jain
Chi Jin
Sham Kakade
Praneeth Netrapalli
Aaron Sidford
ArXivPDFHTML

Papers citing "Streaming PCA: Matching Matrix Bernstein and Near-Optimal Finite Sample Guarantees for Oja's Algorithm"

16 / 16 papers shown
Title
Black-Box $k$-to-$1$-PCA Reductions: Theory and Applications
Black-Box kkk-to-111-PCA Reductions: Theory and Applications
A. Jambulapati
Syamantak Kumar
Jerry Li
Shourya Pandey
Ankit Pensia
Kevin Tian
37
2
0
06 Mar 2024
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
The Edge of Orthogonality: A Simple View of What Makes BYOL Tick
Pierre Harvey Richemond
Allison C. Tam
Yunhao Tang
Florian Strub
Bilal Piot
Felix Hill
SSL
26
9
0
09 Feb 2023
Preference Dynamics Under Personalized Recommendations
Preference Dynamics Under Personalized Recommendations
Sarah Dean
Jamie Morgenstern
67
34
0
25 May 2022
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality
  Constraint
An Implicit Form of Krasulina's k-PCA Update without the Orthonormality Constraint
Ehsan Amid
Manfred K. Warmuth
15
11
0
11 Sep 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed
  Optimization
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
9
316
0
31 May 2019
Winner-Take-All Computation in Spiking Neural Networks
Winner-Take-All Computation in Spiking Neural Networks
Nancy A. Lynch
Cameron Musco
M. Parter
9
23
0
25 Apr 2019
Diffusion Approximations for Online Principal Component Estimation and
  Global Convergence
Diffusion Approximations for Online Principal Component Estimation and Global Convergence
C. J. Li
Mengdi Wang
Han Liu
Tong Zhang
26
12
0
29 Aug 2018
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path
  Integrated Differential Estimator
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
22
567
0
04 Jul 2018
Streaming PCA and Subspace Tracking: The Missing Data Case
Streaming PCA and Subspace Tracking: The Missing Data Case
Laura Balzano
Yuejie Chi
Yue M. Lu
13
82
0
12 Jun 2018
Eigenvector Computation and Community Detection in Asynchronous Gossip
  Models
Eigenvector Computation and Community Detection in Asynchronous Gossip Models
Frederik Mallmann-Trenn
Cameron Musco
Christopher Musco
8
9
0
23 Apr 2018
History PCA: A New Algorithm for Streaming PCA
History PCA: A New Algorithm for Streaming PCA
Puyudi Yang
Cho-Jui Hsieh
Jane-ling Wang
AI4TS
16
23
0
15 Feb 2018
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from
  Streaming Data
Fixed-Rank Approximation of a Positive-Semidefinite Matrix from Streaming Data
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
23
79
0
18 Jun 2017
PCA in Data-Dependent Noise (Correlated-PCA): Nearly Optimal Finite Sample Guarantees
Namrata Vaswani
Praneeth Narayanamurthy
29
2
0
10 Feb 2017
Practical sketching algorithms for low-rank matrix approximation
Practical sketching algorithms for low-rank matrix approximation
J. Tropp
A. Yurtsever
Madeleine Udell
V. Cevher
20
201
0
31 Aug 2016
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain
LazySVD: Even Faster SVD Decomposition Yet Without Agonizing Pain
Zeyuan Allen-Zhu
Yuanzhi Li
15
128
0
12 Jul 2016
Provable Efficient Online Matrix Completion via Non-convex Stochastic
  Gradient Descent
Provable Efficient Online Matrix Completion via Non-convex Stochastic Gradient Descent
Chi Jin
Sham Kakade
Praneeth Netrapalli
9
81
0
26 May 2016
1