ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.07771
  4. Cited By
Neural Text Generation from Structured Data with Application to the
  Biography Domain

Neural Text Generation from Structured Data with Application to the Biography Domain

24 March 2016
R. Lebret
David Grangier
Michael Auli
ArXivPDFHTML

Papers citing "Neural Text Generation from Structured Data with Application to the Biography Domain"

6 / 6 papers shown
Title
Poisoning Web-Scale Training Datasets is Practical
Poisoning Web-Scale Training Datasets is Practical
Nicholas Carlini
Matthew Jagielski
Christopher A. Choquette-Choo
Daniel Paleka
Will Pearce
Hyrum S. Anderson
Andreas Terzis
Kurt Thomas
Florian Tramèr
SILM
31
182
0
20 Feb 2023
Attention is Not All You Need: Pure Attention Loses Rank Doubly
  Exponentially with Depth
Attention is Not All You Need: Pure Attention Loses Rank Doubly Exponentially with Depth
Yihe Dong
Jean-Baptiste Cordonnier
Andreas Loukas
32
373
0
05 Mar 2021
Evaluation of Text Generation: A Survey
Evaluation of Text Generation: A Survey
Asli Celikyilmaz
Elizabeth Clark
Jianfeng Gao
ELM
LM&MA
19
376
0
26 Jun 2020
Ensuring Readability and Data-fidelity using Head-modifier Templates in
  Deep Type Description Generation
Ensuring Readability and Data-fidelity using Head-modifier Templates in Deep Type Description Generation
Jiangjie Chen
Ao Wang
Haiyun Jiang
Suo Feng
Chenguang Li
Yanghua Xiao
25
3
0
29 May 2019
Neural Wikipedian: Generating Textual Summaries from Knowledge Base
  Triples
Neural Wikipedian: Generating Textual Summaries from Knowledge Base Triples
P. Vougiouklis
Hady ElSahar
Lucie-Aimée Kaffee
Christophe Gravier
F. Laforest
Jonathon S. Hare
Elena Simperl
18
69
0
01 Nov 2017
Survey of the State of the Art in Natural Language Generation: Core
  tasks, applications and evaluation
Survey of the State of the Art in Natural Language Generation: Core tasks, applications and evaluation
Albert Gatt
E. Krahmer
LM&MA
ELM
21
809
0
29 Mar 2017
1