ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1603.08315
  4. Cited By
A Shrinkage Principle for Heavy-Tailed Data: High-Dimensional Robust
  Low-Rank Matrix Recovery

A Shrinkage Principle for Heavy-Tailed Data: High-Dimensional Robust Low-Rank Matrix Recovery

28 March 2016
Jianqing Fan
Weichen Wang
Ziwei Zhu
ArXivPDFHTML

Papers citing "A Shrinkage Principle for Heavy-Tailed Data: High-Dimensional Robust Low-Rank Matrix Recovery"

5 / 5 papers shown
Title
Challenges of cellwise outliers
Challenges of cellwise outliers
Jakob Raymaekers
P. Rousseeuw
8
10
0
04 Feb 2023
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai
Hironori Fujisawa
8
4
0
24 Aug 2022
Robust high dimensional factor models with applications to statistical
  machine learning
Robust high dimensional factor models with applications to statistical machine learning
Jianqing Fan
Kaizheng Wang
Yiqiao Zhong
Ziwei Zhu
11
53
0
12 Aug 2018
Robust Estimation via Robust Gradient Estimation
Robust Estimation via Robust Gradient Estimation
Adarsh Prasad
A. Suggala
Sivaraman Balakrishnan
Pradeep Ravikumar
12
219
0
19 Feb 2018
Adaptive robust variable selection
Adaptive robust variable selection
Jianqing Fan
Yingying Fan
Emre Barut
83
194
0
22 May 2012
1