ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.02080
  4. Cited By
Planning with Information-Processing Constraints and Model Uncertainty
  in Markov Decision Processes

Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes

7 April 2016
Jordi Grau-Moya
Felix Leibfried
Tim Genewein
Daniel A. Braun
ArXiv (abs)PDFHTML

Papers citing "Planning with Information-Processing Constraints and Model Uncertainty in Markov Decision Processes"

20 / 20 papers shown
Title
Inverse Decision Modeling: Learning Interpretable Representations of
  Behavior
Inverse Decision Modeling: Learning Interpretable Representations of Behavior
Daniel Jarrett
Alihan Huyuk
M. Schaar
AI4CE
89
28
0
28 Oct 2023
Beyond Bayes-optimality: meta-learning what you know you don't know
Beyond Bayes-optimality: meta-learning what you know you don't know
Jordi Grau-Moya
Grégoire Delétang
M. Kunesch
Tim Genewein
Elliot Catt
...
Jane X. Wang
Marcus Hutter
Christopher Summerfield
Shane Legg
Pedro A. Ortega
42
1
0
30 Sep 2022
Variational Inference for Model-Free and Model-Based Reinforcement
  Learning
Variational Inference for Model-Free and Model-Based Reinforcement Learning
Felix Leibfried
OffRL
76
0
0
04 Sep 2022
Model-Free Risk-Sensitive Reinforcement Learning
Model-Free Risk-Sensitive Reinforcement Learning
Grégoire Delétang
Jordi Grau-Moya
M. Kunesch
Tim Genewein
Rob Brekelmans
Shane Legg
Pedro A. Ortega
OOD
84
10
0
04 Nov 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
63
2
0
26 Mar 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
162
52
0
27 Dec 2020
Reinforcement Learning with Subspaces using Free Energy Paradigm
Reinforcement Learning with Subspaces using Free Energy Paradigm
Milad Ghorbani
Reshad Hosseini
Seyed Pooya Shariatpanahi
M. N. Ahmadabadi
121
0
0
13 Dec 2020
Specialization in Hierarchical Learning Systems
Specialization in Hierarchical Learning Systems
Heinke Hihn
Daniel A. Braun
83
16
0
03 Nov 2020
The Two Kinds of Free Energy and the Bayesian Revolution
The Two Kinds of Free Energy and the Bayesian Revolution
Sebastian Gottwald
Daniel A. Braun
3DV
38
33
0
24 Apr 2020
Mutual-Information Regularization in Markov Decision Processes and
  Actor-Critic Learning
Mutual-Information Regularization in Markov Decision Processes and Actor-Critic Learning
Felix Leibfried
Jordi Grau-Moya
74
22
0
11 Sep 2019
A Unified Bellman Optimality Principle Combining Reward Maximization and
  Empowerment
A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment
Felix Leibfried
Sergio Pascual-Diaz
Jordi Grau-Moya
110
29
0
26 Jul 2019
An Information-theoretic On-line Learning Principle for Specialization
  in Hierarchical Decision-Making Systems
An Information-theoretic On-line Learning Principle for Specialization in Hierarchical Decision-Making Systems
Heinke Hihn
Sebastian Gottwald
Daniel A. Braun
84
16
0
26 Jul 2019
Disentangled Skill Embeddings for Reinforcement Learning
Disentangled Skill Embeddings for Reinforcement Learning
Janith C. Petangoda
Sergio Pascual-Diaz
Vincent Adam
Peter Vrancx
Jordi Grau-Moya
DRLOffRL
62
15
0
21 Jun 2019
Robust Reinforcement Learning for Continuous Control with Model
  Misspecification
Robust Reinforcement Learning for Continuous Control with Model Misspecification
D. Mankowitz
Nir Levine
Rae Jeong
Yuanyuan Shi
Jackie Kay
A. Abdolmaleki
Jost Tobias Springenberg
Timothy A. Mann
Todd Hester
Martin Riedmiller
OOD
128
122
0
18 Jun 2019
Task-Driven Estimation and Control via Information Bottlenecks
Task-Driven Estimation and Control via Information Bottlenecks
Vincent Pacelli
Anirudha Majumdar
34
12
0
20 Sep 2018
Bounded Rational Decision-Making with Adaptive Neural Network Priors
Bounded Rational Decision-Making with Adaptive Neural Network Priors
Heinke Hihn
Sebastian Gottwald
Daniel A. Braun
75
10
0
04 Sep 2018
Balancing Two-Player Stochastic Games with Soft Q-Learning
Balancing Two-Player Stochastic Games with Soft Q-Learning
Jordi Grau-Moya
Felix Leibfried
Haitham Bou-Ammar
122
43
0
09 Feb 2018
AI Safety Gridworlds
AI Safety Gridworlds
Jan Leike
Miljan Martic
Victoria Krakovna
Pedro A. Ortega
Tom Everitt
Andrew Lefrancq
Laurent Orseau
Shane Legg
158
255
0
27 Nov 2017
Hierarchical State Abstractions for Decision-Making Problems with
  Computational Constraints
Hierarchical State Abstractions for Decision-Making Problems with Computational Constraints
Daniel T. Larsson
Daniel A. Braun
Panagiotis Tsiotras
62
12
0
22 Oct 2017
An Information-Theoretic Optimality Principle for Deep Reinforcement
  Learning
An Information-Theoretic Optimality Principle for Deep Reinforcement Learning
Felix Leibfried
Jordi Grau-Moya
Haitham Bou-Ammar
101
24
0
06 Aug 2017
1