Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1604.02390
Cited By
Minimax Optimal Procedures for Locally Private Estimation
8 April 2016
John C. Duchi
Martin J. Wainwright
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Minimax Optimal Procedures for Locally Private Estimation"
18 / 18 papers shown
Title
Contraction of Private Quantum Channels and Private Quantum Hypothesis Testing
Theshani Nuradha
Mark M. Wilde
54
7
0
26 Jun 2024
Beyond Statistical Estimation: Differentially Private Individual Computation via Shuffling
Shaowei Wang
Changyu Dong
Xiangfu Song
Jin Li
Zhili Zhou
Di Wang
Han Wu
74
0
0
26 Jun 2024
Locally Private Estimation with Public Features
Yuheng Ma
Ke Jia
Hanfang Yang
62
3
0
22 May 2024
Distance-based and continuum Fano inequalities with applications to statistical estimation
John C. Duchi
Martin J. Wainwright
58
66
0
12 Nov 2013
Local Privacy and Minimax Bounds: Sharp Rates for Probability Estimation
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
67
147
0
26 May 2013
Privacy Aware Learning
John C. Duchi
Michael I. Jordan
Martin J. Wainwright
140
290
0
07 Oct 2012
Random Differential Privacy
Rob Hall
Alessandro Rinaldo
Larry A. Wasserman
88
91
0
12 Dec 2011
On the Fundamental Limits of Adaptive Sensing
E. Arias-Castro
Emmanuel J. Candes
Mark A. Davenport
127
137
0
20 Nov 2011
High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity
Po-Ling Loh
Martin J. Wainwright
106
560
0
16 Sep 2011
A Learning Theory Approach to Non-Interactive Database Privacy
Avrim Blum
Katrina Ligett
Aaron Roth
81
550
0
10 Sep 2011
Distributed Private Data Analysis: On Simultaneously Solving How and What
A. Beimel
Kobbi Nissim
Eran Omri
FedML
101
208
0
14 Mar 2011
A Unified Framework for High-Dimensional Analysis of M-Estimators with Decomposable Regularizers
S. Negahban
Pradeep Ravikumar
Martin J. Wainwright
Bin Yu
342
1,377
0
13 Oct 2010
Differentially Private Empirical Risk Minimization
Kamalika Chaudhuri
C. Monteleoni
Anand D. Sarwate
100
1,482
0
01 Dec 2009
Learning in a Large Function Space: Privacy-Preserving Mechanisms for SVM Learning
Benjamin I. P. Rubinstein
Peter L. Bartlett
Ling Huang
N. Taft
91
293
0
30 Nov 2009
On the Geometry of Differential Privacy
Moritz Hardt
Kunal Talwar
108
462
0
21 Jul 2009
A statistical framework for differential privacy
Larry A. Wasserman
Shuheng Zhou
100
482
0
16 Nov 2008
What Can We Learn Privately?
S. Kasiviswanathan
Homin K. Lee
Kobbi Nissim
Sofya Raskhodnikova
Adam D. Smith
106
1,459
0
06 Mar 2008
Composition Attacks and Auxiliary Information in Data Privacy
S. R. Ganta
S. Kasiviswanathan
Adam D. Smith
117
422
0
01 Mar 2008
1