ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.03373
  4. Cited By
A Convex Surrogate Operator for General Non-Modular Loss Functions

A Convex Surrogate Operator for General Non-Modular Loss Functions

12 April 2016
Jiaqian Yu
Matthew Blaschko
ArXiv (abs)PDFHTML

Papers citing "A Convex Surrogate Operator for General Non-Modular Loss Functions"

2 / 2 papers shown
Title
Optimization for Medical Image Segmentation: Theory and Practice when
  evaluating with Dice Score or Jaccard Index
Optimization for Medical Image Segmentation: Theory and Practice when evaluating with Dice Score or Jaccard Index
Tom Eelbode
J. Bertels
Maxim Berman
Dirk Vandermeulen
F. Maes
R. Bisschops
Matthew B. Blaschko
134
267
0
26 Oct 2020
An Efficient Decomposition Framework for Discriminative Segmentation
  with Supermodular Losses
An Efficient Decomposition Framework for Discriminative Segmentation with Supermodular Losses
Jiaqian Yu
Matthew B. Blaschko
21
1
0
13 Feb 2017
1