ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.04931
  4. Cited By
Regularizing Solutions to the MEG Inverse Problem Using Space-Time
  Separable Covariance Functions

Regularizing Solutions to the MEG Inverse Problem Using Space-Time Separable Covariance Functions

17 April 2016
Arno Solin
Pasi Jylänki
Jaakko Kauramaki
Tom Heskes
Marcel van Gerven
Simo Särkkä
ArXiv (abs)PDFHTML

Papers citing "Regularizing Solutions to the MEG Inverse Problem Using Space-Time Separable Covariance Functions"

3 / 3 papers shown
Title
Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian
  Process Priors
Spatio-Temporal Structured Sparse Regression with Hierarchical Gaussian Process Priors
Danil Kuzin
Olga Isupova
Lyudmila Mihaylova
69
8
0
15 Jul 2018
Variational Fourier features for Gaussian processes
Variational Fourier features for Gaussian processes
J. Hensman
N. Durrande
Arno Solin
VLM
93
202
0
21 Nov 2016
Dynamic Decomposition of Spatiotemporal Neural Signals
Dynamic Decomposition of Spatiotemporal Neural Signals
L. Ambrogioni
Marcel van Gerven
E. Maris
20
44
0
09 May 2016
1