ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1604.06815
  4. Cited By
Non-convex Global Minimization and False Discovery Rate Control for the
  TREX
v1v2 (latest)

Non-convex Global Minimization and False Discovery Rate Control for the TREX

22 April 2016
Jacob Bien
Irina Gaynanova
Johannes Lederer
Christian L. Müller
ArXiv (abs)PDFHTML

Papers citing "Non-convex Global Minimization and False Discovery Rate Control for the TREX"

6 / 6 papers shown
Title
Tuning-free ridge estimators for high-dimensional generalized linear
  models
Tuning-free ridge estimators for high-dimensional generalized linear models
Shih-Ting Huang
Fang Xie
Johannes Lederer
35
4
0
27 Feb 2020
A Survey of Tuning Parameter Selection for High-dimensional Regression
A Survey of Tuning Parameter Selection for High-dimensional Regression
Y. Wu
Lan Wang
77
36
0
10 Aug 2019
Stability selection enables robust learning of partial differential
  equations from limited noisy data
Stability selection enables robust learning of partial differential equations from limited noisy data
Suryanarayana Maddu
B. Cheeseman
I. Sbalzarini
Christian L. Müller
58
19
0
17 Jul 2019
Inference for high-dimensional instrumental variables regression
Inference for high-dimensional instrumental variables regression
David Gold
Johannes Lederer
Jing Tao
93
36
0
18 Aug 2017
A Prototype Knockoff Filter for Group Selection with FDR Control
A Prototype Knockoff Filter for Group Selection with FDR Control
Jiajie Chen
Anthony Hou
T. Hou
101
10
0
11 Jun 2017
Topology Adaptive Graph Estimation in High Dimensions
Topology Adaptive Graph Estimation in High Dimensions
Johannes Lederer
Christian L. Müller
49
1
0
27 Oct 2014
1