ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.00353
  4. Cited By
Rate-Optimal Perturbation Bounds for Singular Subspaces with
  Applications to High-Dimensional Statistics

Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics

2 May 2016
T. Tony Cai
Anru R. Zhang
ArXivPDFHTML

Papers citing "Rate-Optimal Perturbation Bounds for Singular Subspaces with Applications to High-Dimensional Statistics"

30 / 30 papers shown
Title
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Mode-wise Principal Subspace Pursuit and Matrix Spiked Covariance Model
Runshi Tang
M. Yuan
Anru R. Zhang
43
3
0
02 Jul 2023
Statistical and computational rates in high rank tensor estimation
Statistical and computational rates in high rank tensor estimation
Chanwoo Lee
Miaoyan Wang
25
1
0
08 Apr 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
40
4
0
10 Mar 2023
Approximate message passing from random initialization with applications
  to $\mathbb{Z}_{2}$ synchronization
Approximate message passing from random initialization with applications to Z2\mathbb{Z}_{2}Z2​ synchronization
Gen Li
Wei Fan
Yuting Wei
26
10
0
07 Feb 2023
A Spectral Method for Assessing and Combining Multiple Data
  Visualizations
A Spectral Method for Assessing and Combining Multiple Data Visualizations
Rong Ma
Eric D. Sun
James Y. Zou
11
11
0
25 Oct 2022
Exact Minimax Optimality of Spectral Methods in Phase Synchronization
  and Orthogonal Group Synchronization
Exact Minimax Optimality of Spectral Methods in Phase Synchronization and Orthogonal Group Synchronization
An Zhang
37
5
0
12 Sep 2022
Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
Optimal Clustering by Lloyd Algorithm for Low-Rank Mixture Model
Zhongyuan Lyu
Dong Xia
29
3
0
11 Jul 2022
Tensor-on-Tensor Regression: Riemannian Optimization,
  Over-parameterization, Statistical-computational Gap, and Their Interplay
Tensor-on-Tensor Regression: Riemannian Optimization, Over-parameterization, Statistical-computational Gap, and Their Interplay
Yuetian Luo
Anru R. Zhang
29
19
0
17 Jun 2022
One-Way Matching of Datasets with Low Rank Signals
One-Way Matching of Datasets with Low Rank Signals
Shuxiao Chen
Sizun Jiang
Zongming Ma
Garry P. Nolan
Bokai Zhu
23
10
0
29 Apr 2022
Nearly Minimax Algorithms for Linear Bandits with Shared Representation
Nearly Minimax Algorithms for Linear Bandits with Shared Representation
Jiaqi Yang
Qi Lei
Jason D. Lee
S. Du
35
16
0
29 Mar 2022
Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Entrywise Recovery Guarantees for Sparse PCA via Sparsistent Algorithms
Joshua Agterberg
Jeremias Sulam
19
0
0
08 Feb 2022
The Power of Contrast for Feature Learning: A Theoretical Analysis
The Power of Contrast for Feature Learning: A Theoretical Analysis
Wenlong Ji
Zhun Deng
Ryumei Nakada
James Y. Zou
Linjun Zhang
SSL
51
48
0
06 Oct 2021
Classification of high-dimensional data with spiked covariance matrix
  structure
Classification of high-dimensional data with spiked covariance matrix structure
Yin-Jen Chen
M. Tang
62
0
0
05 Oct 2021
Theoretical Foundations of t-SNE for Visualizing High-Dimensional
  Clustered Data
Theoretical Foundations of t-SNE for Visualizing High-Dimensional Clustered Data
T. Tony Cai
Rong Ma
19
107
0
16 May 2021
Spectral Methods for Data Science: A Statistical Perspective
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
29
165
0
15 Dec 2020
Recursive Importance Sketching for Rank Constrained Least Squares:
  Algorithms and High-order Convergence
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration
Optimal High-order Tensor SVD via Tensor-Train Orthogonal Iteration
Yuchen Zhou
Anru R. Zhang
Lili Zheng
Yazhen Wang
21
22
0
06 Oct 2020
Perturbation expansions and error bounds for the truncated singular
  value decomposition
Perturbation expansions and error bounds for the truncated singular value decomposition
Trung Vu
Evgenia Chunikhina
Raviv Raich
13
24
0
16 Sep 2020
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type
  Matrix
On the Non-Asymptotic Concentration of Heteroskedastic Wishart-type Matrix
T. Tony Cai
Rungang Han
Anru R. Zhang
34
15
0
28 Aug 2020
Tensor Clustering with Planted Structures: Statistical Optimality and
  Computational Limits
Tensor Clustering with Planted Structures: Statistical Optimality and Computational Limits
Yuetian Luo
Anru R. Zhang
35
44
0
21 May 2020
Distributed Estimation for Principal Component Analysis: an Enlarged
  Eigenspace Analysis
Distributed Estimation for Principal Component Analysis: an Enlarged Eigenspace Analysis
Xi Chen
J. Lee
He Li
Yun Yang
6
6
0
05 Apr 2020
On Two Distinct Sources of Nonidentifiability in Latent Position Random
  Graph Models
On Two Distinct Sources of Nonidentifiability in Latent Position Random Graph Models
Joshua Agterberg
M. Tang
Carey E. Priebe
CML
30
9
0
31 Mar 2020
An Optimal Statistical and Computational Framework for Generalized
  Tensor Estimation
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation
Rungang Han
Rebecca Willett
Anru R. Zhang
24
65
0
26 Feb 2020
Statistical Inference for High-Dimensional Matrix-Variate Factor Model
Statistical Inference for High-Dimensional Matrix-Variate Factor Model
Elynn Y. Chen
Jianqing Fan
40
63
0
07 Jan 2020
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance
  Sketching
ISLET: Fast and Optimal Low-rank Tensor Regression via Importance Sketching
Anru R. Zhang
Yuetian Luo
Garvesh Raskutti
M. Yuan
25
44
0
09 Nov 2019
High-dimensional principal component analysis with heterogeneous
  missingness
High-dimensional principal component analysis with heterogeneous missingness
Ziwei Zhu
Tengyao Wang
R. Samworth
36
47
0
28 Jun 2019
Signal-plus-noise matrix models: eigenvector deviations and fluctuations
Signal-plus-noise matrix models: eigenvector deviations and fluctuations
Joshua Cape
M. Tang
Carey E. Priebe
26
48
0
01 Feb 2018
Tensor SVD: Statistical and Computational Limits
Tensor SVD: Statistical and Computational Limits
Anru R. Zhang
Dong Xia
21
166
0
08 Mar 2017
Singular Vector Perturbation under Gaussian Noise
Singular Vector Perturbation under Gaussian Noise
Rongrong Wang
60
31
0
09 Aug 2012
Singular vectors under random perturbation
Singular vectors under random perturbation
V. Vu
85
74
0
12 Apr 2010
1