Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.06182
Cited By
Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods
20 May 2016
Mehrtash Harandi
Mathieu Salzmann
Leonid Sigal
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods"
50 / 50 papers shown
Title
MPEC: Manifold-Preserved EEG Classification via an Ensemble of Clustering-Based Classifiers
Shermin Shahbazi
Mohammad-Reza Nasiri
Majid Ramezani
118
0
0
30 Apr 2025
SPD Learning for Covariance-Based Neuroimaging Analysis: Perspectives, Methods, and Challenges
Ce Ju
Reinmar J. Kobler
Antoine Collas
M. Kawanabe
Cuntai Guan
Bertrand Thirion
104
0
0
26 Apr 2025
Nested subspace learning with flags
Tom Szwagier
Xavier Pennec
106
1
0
09 Feb 2025
Wasserstein Distance Rivals Kullback-Leibler Divergence for Knowledge Distillation
Jiaming Lv
Haoyuan Yang
P. Li
154
2
0
11 Dec 2024
Product Geometries on Cholesky Manifolds with Applications to SPD Manifolds
Ziheng Chen
Yue Song
Xiao-Jun Wu
N. Sebe
84
2
0
02 Jul 2024
Matrix Manifold Neural Networks++
Xuan Son Nguyen
Shuo Yang
A. Histace
76
6
0
29 May 2024
A Framework for Bilevel Optimization on Riemannian Manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Akiko Takeda
81
5
0
06 Feb 2024
Riemannian Self-Attention Mechanism for SPD Networks
Rui Wang
Xiao-Jun Wu
Hui Li
Josef Kittler
55
1
0
28 Nov 2023
Local Spherical Harmonics Improve Skeleton-Based Hand Action Recognition
Katharina Prasse
Steffen Jung
Yuxuan Zhou
Margret Keuper
64
1
0
21 Aug 2023
Riemannian Multinomial Logistics Regression for SPD Neural Networks
Ziheng Chen
Yue Song
Gaowen Liu
Ramana Rao Kompella
Xiaojun Wu
N. Sebe
80
5
0
18 May 2023
Building Neural Networks on Matrix Manifolds: A Gyrovector Space Approach
X. Nguyen
Shuo Yang
60
11
0
08 May 2023
Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals
Clément Bonet
Benoit Malézieux
A. Rakotomamonjy
Lucas Drumetz
Thomas Moreau
M. Kowalski
Nicolas Courty
96
16
0
10 Mar 2023
DreamNet: A Deep Riemannian Network based on SPD Manifold Learning for Visual Classification
Rui Wang
Xiaojun Wu
Ziheng Chen
Tianyang Xu
J. Kittler
42
2
0
16 Jun 2022
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael I. Jordan
Tianyi Lin
Emmanouil-Vasileios Vlatakis-Gkaragkounis
66
19
0
04 Jun 2022
Discriminative Supervised Subspace Learning for Cross-modal Retrieval
Haoming Zhang
Xiaojun Wu
Tianyang Xu
Dongling Zhang
22
0
0
26 Jan 2022
Riemannian Local Mechanism for SPD Neural Networks
Ziheng Chen
Tianyang Xu
Xiaojun Wu
Rui Wang
Zhiwu Huang
J. Kittler
98
17
0
25 Jan 2022
Collaborative Representation for SPD Matrices with Application to Image-Set Classification
Li-li Chu
Rui Wang
Xiaojun Wu
46
1
0
22 Jan 2022
Nested Hyperbolic Spaces for Dimensionality Reduction and Hyperbolic NN Design
Xiran Fan
Chun-Hao Yang
B. Vemuri
88
18
0
03 Dec 2021
Temporal-attentive Covariance Pooling Networks for Video Recognition
Zilin Gao
Qilong Wang
Bingbing Zhang
Q. Hu
P. Li
100
25
0
27 Oct 2021
Learning Log-Determinant Divergences for Positive Definite Matrices
A. Cherian
P. Stanitsas
Jue Wang
Mehrtash Harandi
V. Morellas
Nikolaos Papanikolopoulos
38
4
0
13 Apr 2021
Learning Chebyshev Basis in Graph Convolutional Networks for Skeleton-based Action Recognition
H. Sahbi
GNN
59
0
0
12 Apr 2021
Discriminative Noise Robust Sparse Orthogonal Label Regression-based Domain Adaptation
Lingkun Luo
Liming Chen
Shiqiang Hu
OOD
59
6
0
09 Jan 2021
Nested Grassmannians for Dimensionality Reduction with Applications
Chun-Hao Yang
B. Vemuri
18
2
0
27 Oct 2020
Neural Architecture Search of SPD Manifold Networks
R. Sukthanker
Zhiwu Huang
Suryansh Kumar
Erik Goron Endsjo
Yan Wu
Luc Van Gool
110
14
0
27 Oct 2020
High-Dimensional Bayesian Optimization via Nested Riemannian Manifolds
Noémie Jaquier
Leonel Rozo
103
24
0
21 Oct 2020
Stochastic Zeroth-order Riemannian Derivative Estimation and Optimization
Jiaxiang Li
Krishnakumar Balasubramanian
Shiqian Ma
16
5
0
25 Mar 2020
Tangent space spatial filters for interpretable and efficient Riemannian classification
Jiachen Xu
Moritz Grosse-Wentrup
V. Jayaram
46
16
0
23 Sep 2019
More About Covariance Descriptors for Image Set Coding: Log-Euclidean Framework based Kernel Matrix Representation
Kaixuan Chen
Xiaojun Wu
Jieyi Ren
Rui Wang
J. Kittler
23
6
0
16 Sep 2019
Multiple Riemannian Manifold-valued Descriptors based Image Set Classification with Multi-Kernel Metric Learning
Rui Wang
Xiaojun Wu
J. Kittler
35
30
0
06 Aug 2019
Hallucinating IDT Descriptors and I3D Optical Flow Features for Action Recognition with CNNs
Lei Wang
Piotr Koniusz
D. Huynh
32
7
0
13 Jun 2019
Manifold-regression to predict from MEG/EEG brain signals without source modeling
D. Sabbagh
Pierre Ablin
Gaël Varoquaux
Alexandre Gramfort
Denis A. Engemann
63
59
0
04 Jun 2019
A neural network based on SPD manifold learning for skeleton-based hand gesture recognition
X. Nguyen
Luc Brun
O. Lézoray
Sébastien Bougleux
3DH
77
119
0
29 Apr 2019
Analyzing Dynamical Brain Functional Connectivity As Trajectories on Space of Covariance Matrices
Mengyu Dai
Zhengwu Zhang
Anuj Srivastava
50
32
0
10 Apr 2019
Riemannian joint dimensionality reduction and dictionary learning on symmetric positive definite manifold
Hiroyuki Kasai
Bamdev Mishra
23
1
0
11 Feb 2019
Riemannian adaptive stochastic gradient algorithms on matrix manifolds
Hiroyuki Kasai
Pratik Jawanpuria
Bamdev Mishra
84
3
0
04 Feb 2019
LGLG-WPCA: An Effective Texture-based Method for Face Recognition
Chaorong Li
Wei Huang
Huafu Chen
CVBM
21
0
0
20 Nov 2018
Perceptual Visual Interactive Learning
Sheng-lan Liu
Xiang Liu
Yang Liu
Lin Feng
Hong Qiao
Jian Zhou
Yang Wang
23
4
0
25 Oct 2018
A Supervised Geometry-Aware Mapping Approach for Classification of Hyperspectral Images
Ramanarayan Mohanty
S. Happy
Aurobinda Routray
18
0
0
07 Jul 2018
Grassmannian Discriminant Maps (GDM) for Manifold Dimensionality Reduction with Application to Image Set Classification
Rui Wang
Xiaojun Wu
Kai-Xuan Chen
J. Kittler
21
0
0
28 Jun 2018
Component SPD Matrices: A lower-dimensional discriminative data descriptor for image set classification
Kai-Xuan Chen
Xiao-Jun Wu
15
15
0
16 Jun 2018
Riemannian kernel based Nyström method for approximate infinite-dimensional covariance descriptors with application to image set classification
Kaixuan Chen
Xiaojun Wu
Rui Wang
J. Kittler
20
10
0
16 Jun 2018
Multiple Manifolds Metric Learning with Application to Image Set Classification
Rui Wang
Xiaojun Wu
Kaixuan Chen
J. Kittler
31
21
0
30 May 2018
A Simple Riemannian Manifold Network for Image Set Classification
Rui Wang
Xiaojun Wu
J. Kittler
32
3
0
27 May 2018
Learning representations for multivariate time series with missing data using Temporal Kernelized Autoencoders
F. Bianchi
L. Livi
Karl Øyvind Mikalsen
Michael C. Kampffmeyer
Robert Jenssen
AI4TS
84
11
0
09 May 2018
Learning a Robust Representation via a Deep Network on Symmetric Positive Definite Manifolds
Zhi Gao
Yuwei Wu
Xingyuan Bu
Yunde Jia
95
32
0
17 Nov 2017
Dimensionality Reduction on Grassmannian via Riemannian Optimization: A Generalized Perspective
Tianci Liu
Zelin Shi
Yunpeng Liu
19
0
0
17 Nov 2017
Hierarchical Gaussian Descriptors with Application to Person Re-Identification
Tetsu Matsukawa
Takahiro Okabe
Einoshin Suzuki
Yoichi Sato
72
34
0
14 Jun 2017
A Riemannian gossip approach to subspace learning on Grassmann manifold
Bamdev Mishra
Hiroyuki Kasai
Pratik Jawanpuria
Atul Saroop
25
1
0
01 May 2017
Learning an Invariant Hilbert Space for Domain Adaptation
Samitha Herath
Mehrtash Harandi
Fatih Porikli
104
107
0
25 Nov 2016
Geometry-aware Similarity Learning on SPD Manifolds for Visual Recognition
Zhiwu Huang
Ruiping Wang
Xianqiu Li
Wenxian Liu
Shiguang Shan
Luc Van Gool
Xilin Chen
73
38
0
17 Aug 2016
1