Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1605.07277
Cited By
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
24 May 2016
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples"
22 / 22 papers shown
Title
Towards more transferable adversarial attack in black-box manner
Chun Tong Lei
Zhongliang Guo
Hon Chung Lee
Minh Quoc Duong
Chun Pong Lau
DiffM
AAML
126
0
0
23 May 2025
Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation
Yi Yu
Song Xia
Xun Lin
Chenqi Kong
Wenhan Yang
Shijian Lu
Yap-Peng Tan
Alex C. Kot
AAML
SILM
347
0
0
20 Apr 2025
From Visual Explanations to Counterfactual Explanations with Latent Diffusion
Tung Luu
Nam Le
Duc Le
Bac Le
DiffM
AAML
FAtt
93
0
0
12 Apr 2025
AMUN: Adversarial Machine UNlearning
A. Boroojeny
Hari Sundaram
Varun Chandrasekaran
MU
AAML
57
0
0
02 Mar 2025
Enabling AutoML for Zero-Touch Network Security: Use-Case Driven Analysis
Li Yang
Mirna El Rajab
Abdallah Shami
Sami Muhaidat
101
7
0
28 Feb 2025
Cross-Modal Transferable Image-to-Video Attack on Video Quality Metrics
Georgii Gotin
E. Shumitskaya
Anastasia Antsiferova
D. Vatolin
AAML
59
0
0
14 Jan 2025
Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data
Binghui Li
Yuanzhi Li
OOD
46
2
0
11 Oct 2024
Understanding Model Ensemble in Transferable Adversarial Attack
Wei Yao
Zeliang Zhang
Huayi Tang
Yong Liu
48
3
0
09 Oct 2024
Partner in Crime: Boosting Targeted Poisoning Attacks against Federated Learning
Shihua Sun
Shridatt Sugrim
Angelos Stavrou
Haining Wang
AAML
84
1
0
13 Jul 2024
Bidirectional Consistency Models
Liangchen Li
Jiajun He
DiffM
74
12
0
26 Mar 2024
Towards Adversarially Robust Dataset Distillation by Curvature Regularization
Eric Xue
Yijiang Li
Haoyang Liu
Yifan Shen
Haohan Wang
Haohan Wang
DD
79
8
0
15 Mar 2024
Accelerated Smoothing: A Scalable Approach to Randomized Smoothing
Devansh Bhardwaj
Kshitiz Kaushik
Sarthak Gupta
AAML
46
0
0
12 Feb 2024
Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on AI Systems
Guangjing Wang
Ce Zhou
Yuanda Wang
Bocheng Chen
Hanqing Guo
Qiben Yan
AAML
SILM
85
3
0
20 Nov 2023
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds
Hejia Geng
Peng Li
AAML
48
3
0
20 Aug 2023
Nash Equilibria, Regularization and Computation in Optimal Transport-Based Distributionally Robust Optimization
Soroosh Shafieezadeh-Abadeh
Liviu Aolaritei
Florian Dorfler
Daniel Kuhn
86
21
0
07 Mar 2023
Practical No-box Adversarial Attacks with Training-free Hybrid Image Transformation
Qilong Zhang
Chaoning Zhang
Chaoning Zhang
Chaoqun Li
Xuanhan Wang
Jingkuan Song
Lianli Gao
AAML
51
21
0
09 Mar 2022
Adversarial Examples on Object Recognition: A Comprehensive Survey
A. Serban
E. Poll
Joost Visser
AAML
53
73
0
07 Aug 2020
Towards Robust and Stable Deep Learning Algorithms for Forward Backward Stochastic Differential Equations
Batuhan Güler
Alexis Laignelet
P. Parpas
OOD
67
16
0
25 Oct 2019
Generating Natural Adversarial Examples
Zhengli Zhao
Dheeru Dua
Sameer Singh
GAN
AAML
102
599
0
31 Oct 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
74
2,140
0
21 Aug 2017
Simple Black-Box Adversarial Perturbations for Deep Networks
Nina Narodytska
S. Kasiviswanathan
AAML
41
237
0
19 Dec 2016
Poisoning Attacks against Support Vector Machines
Battista Biggio
B. Nelson
Pavel Laskov
AAML
50
1,580
0
27 Jun 2012
1