ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1605.09735
  4. Cited By
Information Theoretically Aided Reinforcement Learning for Embodied
  Agents

Information Theoretically Aided Reinforcement Learning for Embodied Agents

31 May 2016
Guido Montúfar
K. Zahedi
Nihat Ay
ArXiv (abs)PDFHTML

Papers citing "Information Theoretically Aided Reinforcement Learning for Embodied Agents"

6 / 6 papers shown
Title
Adaptive Reward-Free Exploration
Adaptive Reward-Free Exploration
E. Kaufmann
Pierre Ménard
O. D. Domingues
Anders Jonsson
Edouard Leurent
Michal Valko
77
82
0
11 Jun 2020
A Unified Bellman Optimality Principle Combining Reward Maximization and
  Empowerment
A Unified Bellman Optimality Principle Combining Reward Maximization and Empowerment
Felix Leibfried
Sergio Pascual-Diaz
Jordi Grau-Moya
110
29
0
26 Jul 2019
Mega-Reward: Achieving Human-Level Play without Extrinsic Rewards
Mega-Reward: Achieving Human-Level Play without Extrinsic Rewards
Yuhang Song
Jianyi Wang
Thomas Lukasiewicz
Zhenghua Xu
Shangtong Zhang
Andrzej Wojcicki
Mai Xu
LRM
87
15
0
12 May 2019
A unified strategy for implementing curiosity and empowerment driven
  reinforcement learning
A unified strategy for implementing curiosity and empowerment driven reinforcement learning
Ildefons Magrans de Abril
Ryota Kanai
76
20
0
18 Jun 2018
Curiosity-driven reinforcement learning with homeostatic regulation
Curiosity-driven reinforcement learning with homeostatic regulation
Ildefons Magrans de Abril
Ryota Kanai
82
28
0
23 Jan 2018
VIME: Variational Information Maximizing Exploration
VIME: Variational Information Maximizing Exploration
Rein Houthooft
Xi Chen
Yan Duan
John Schulman
F. Turck
Pieter Abbeel
117
78
0
31 May 2016
1