Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1606.00313
Cited By
Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits
1 June 2016
Vasilis Syrgkanis
Haipeng Luo
A. Krishnamurthy
Robert Schapire
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved Regret Bounds for Oracle-Based Adversarial Contextual Bandits"
6 / 6 papers shown
Title
LC-Tsallis-INF: Generalized Best-of-Both-Worlds Linear Contextual Bandits
Masahiro Kato
Shinji Ito
90
0
0
05 Mar 2024
Taking a hint: How to leverage loss predictors in contextual bandits?
Chen-Yu Wei
Haipeng Luo
Alekh Agarwal
82
27
0
04 Mar 2020
Efficient Algorithms for Adversarial Contextual Learning
Vasilis Syrgkanis
A. Krishnamurthy
Robert Schapire
87
79
0
08 Feb 2016
BISTRO: An Efficient Relaxation-Based Method for Contextual Bandits
Alexander Rakhlin
Karthik Sridharan
OffRL
182
72
0
06 Feb 2016
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits
Alekh Agarwal
Daniel J. Hsu
Satyen Kale
John Langford
Lihong Li
Robert Schapire
OffRL
213
504
0
04 Feb 2014
Efficient Optimal Learning for Contextual Bandits
Miroslav Dudík
Daniel J. Hsu
Satyen Kale
Nikos Karampatziakis
John Langford
L. Reyzin
Tong Zhang
132
300
0
13 Jun 2011
1