ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.00589
21
88

Single-Model Encoder-Decoder with Explicit Morphological Representation for Reinflection

2 June 2016
Katharina Kann
Hinrich Schütze
    BDL
ArXivPDFHTML
Abstract

Morphological reinflection is the task of generating a target form given a source form, a source tag and a target tag. We propose a new way of modeling this task with neural encoder-decoder models. Our approach reduces the amount of required training data for this architecture and achieves state-of-the-art results, making encoder-decoder models applicable to morphological reinflection even for low-resource languages. We further present a new automatic correction method for the outputs based on edit trees.

View on arXiv
Comments on this paper