ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.04273
  4. Cited By
Metamodel-based sensitivity analysis: Polynomial chaos expansions and
  Gaussian processes

Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes

14 June 2016
Loic Le Gratiet
S. Marelli
Bruno Sudret
ArXiv (abs)PDFHTML

Papers citing "Metamodel-based sensitivity analysis: Polynomial chaos expansions and Gaussian processes"

28 / 28 papers shown
Title
Sampling from Gaussian Processes: A Tutorial and Applications in Global Sensitivity Analysis and Optimization
Sampling from Gaussian Processes: A Tutorial and Applications in Global Sensitivity Analysis and Optimization
Bach Do
Nafeezat A. Ajenifuja
Taiwo A. Adebiyi
Ruda Zhang
GP
112
2
0
19 Jul 2025
Active Learning for Derivative-Based Global Sensitivity Analysis with
  Gaussian Processes
Active Learning for Derivative-Based Global Sensitivity Analysis with Gaussian Processes
Syrine Belakaria
Benjamin Letham
J. Doppa
Barbara Engelhardt
Stefano Ermon
E. Bakshy
GP
93
1
0
13 Jul 2024
Discovering deposition process regimes: leveraging unsupervised learning
  for process insights, surrogate modeling, and sensitivity analysis
Discovering deposition process regimes: leveraging unsupervised learning for process insights, surrogate modeling, and sensitivity analysis
Geremy Loachamín Suntaxi
Paris Papavasileiou
E. D. Koronaki
Dimitrios G. Giovanis
G. Gakis
...
M. Kathrein
Gabriele Pozzetti
Christoph Czettl
Stéphane P. A. Bordas
A. Boudouvis
99
0
0
24 May 2024
Wiener Chaos in Kernel Regression: Towards Untangling Aleatoric and
  Epistemic Uncertainty
Wiener Chaos in Kernel Regression: Towards Untangling Aleatoric and Epistemic Uncertainty
T. Faulwasser
O. Molodchyk
186
1
0
12 Dec 2023
Variance-based sensitivity of Bayesian inverse problems to the prior
  distribution
Variance-based sensitivity of Bayesian inverse problems to the prior distributionInternational Journal for Uncertainty Quantification (IJUQ), 2023
John E. Darges
A. Alexanderian
P. Gremaud
82
3
0
27 Oct 2023
Machine learning with data assimilation and uncertainty quantification
  for dynamical systems: a review
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a reviewIEEE/CAA Journal of Automatica Sinica (IEEE/CAA JAS), 2023
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Wenhan Luo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
203
201
0
18 Mar 2023
Surrogate-based global sensitivity analysis with statistical guarantees
  via floodgate
Surrogate-based global sensitivity analysis with statistical guarantees via floodgate
Massimo Aufiero
Lucas Janson
AI4CE
102
4
0
11 Aug 2022
A Review of Machine Learning Methods Applied to Structural Dynamics and
  Vibroacoustic
A Review of Machine Learning Methods Applied to Structural Dynamics and VibroacousticMechanical systems and signal processing (MSSP), 2022
Barbara Z Cunha
C. Droz
A. Zine
Stéphane Foulard
M. Ichchou
AI4CE
169
114
0
13 Apr 2022
Extreme learning machines for variance-based global sensitivity analysis
Extreme learning machines for variance-based global sensitivity analysis
John E. Darges
A. Alexanderian
P. Gremaud
198
4
0
14 Jan 2022
Uncertainty quantification of a three-dimensional in-stent restenosis
  model with surrogate modelling
Uncertainty quantification of a three-dimensional in-stent restenosis model with surrogate modelling
Dongwei Ye
Pavel S. Zun
Valeria Krzhizhanovskaya
Alfons G. Hoekstra
198
1
0
11 Nov 2021
Graph Neural Network Guided Local Search for the Traveling Salesperson
  Problem
Graph Neural Network Guided Local Search for the Traveling Salesperson ProblemInternational Conference on Learning Representations (ICLR), 2021
Benjamin H. Hudson
Qingbiao Li
Matthew Malencia
Amanda Prorok
187
83
0
11 Oct 2021
Global sensitivity analysis using derivative-based sparse Poincaré
  chaos expansions
Global sensitivity analysis using derivative-based sparse Poincaré chaos expansions
Nora Lüthen
O. Roustant
Fabrice Gamboa
Bertrand Iooss
S. Marelli
Bruno Sudret
332
6
0
01 Jul 2021
Adaptive use of replicated Latin Hypercube Designs for computing Sobol'
  sensitivity indices
Adaptive use of replicated Latin Hypercube Designs for computing Sobol' sensitivity indicesReliability Engineering & System Safety (Reliab. Eng. Syst. Saf.), 2021
Guillaume Damblin
Alberto Ghione
83
18
0
17 Mar 2021
Estimation of first-order sensitivity indices based on symmetric
  reflected Vietoris-Rips complexes areas
Estimation of first-order sensitivity indices based on symmetric reflected Vietoris-Rips complexes areas
Alberto Hernández
Maikol Solís
Ronald A. Zúniga-Rojas
57
0
0
09 Dec 2020
Automatic selection of basis-adaptive sparse polynomial chaos expansions
  for engineering applications
Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applicationsInternational Journal for Uncertainty Quantification (IJUQ), 2020
Nora Lüthen
S. Marelli
Bruno Sudret
325
35
0
10 Sep 2020
Stochastic spectral embedding
Stochastic spectral embeddingInternational Journal for Uncertainty Quantification (IJUQ), 2020
S. Marelli
Paul Wagner
C. Lataniotis
Bruno Sudret
158
24
0
09 Apr 2020
RKHSMetaMod: An R package to estimate the Hoeffding decomposition of a
  complex model by solving RKHS ridge group sparse optimization problem
RKHSMetaMod: An R package to estimate the Hoeffding decomposition of a complex model by solving RKHS ridge group sparse optimization problemThe R Journal (JR), 2019
Halaleh Kamari
S. Huet
M. Taupin
233
1
0
31 May 2019
Derivative-based global sensitivity analysis for models with
  high-dimensional inputs and functional outputs
Derivative-based global sensitivity analysis for models with high-dimensional inputs and functional outputsSIAM Journal on Scientific Computing (SISC), 2019
Helen L. Cleaves
A. Alexanderian
H. Guy
Ralph C. Smith
Meilin Yu
203
10
0
12 Feb 2019
Optimal Uncertainty Quantification on moment class using canonical
  moments
Optimal Uncertainty Quantification on moment class using canonical moments
J. Stenger
Fabrice Gamboa
Merlin Keller
Bertrand Iooss
UQCV
99
0
0
30 Nov 2018
Comparison of Gaussian process modeling software
Comparison of Gaussian process modeling software
Collin B. Erickson
Bruce E. Ankenman
S. Sanchez
GP
177
84
0
09 Oct 2017
The Gaussian process modelling module in UQLab
The Gaussian process modelling module in UQLab
C. Lataniotis
S. Marelli
Bruno Sudret
GP
116
12
0
27 Sep 2017
Principal component analysis and sparse polynomial chaos expansions for
  global sensitivity analysis and model calibration: application to urban
  drainage simulation
Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: application to urban drainage simulation
J. Nagel
J. Rieckermann
Bruno Sudret
183
69
0
11 Sep 2017
An active-learning algorithm that combines sparse polynomial chaos
  expansions and bootstrap for structural reliability analysis
An active-learning algorithm that combines sparse polynomial chaos expansions and bootstrap for structural reliability analysis
S. Marelli
Bruno Sudret
110
255
0
05 Sep 2017
Shapley effects for sensitivity analysis with correlated inputs:
  comparisons with Sobol' indices, numerical estimation and applications
Shapley effects for sensitivity analysis with correlated inputs: comparisons with Sobol' indices, numerical estimation and applications
Bertrand Iooss
Clémentine Prieur
FAtt
349
111
0
05 Jul 2017
Global sensitivity analysis in the context of imprecise probabilities
  (p-boxes) using sparse polynomial chaos expansions
Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions
R. Schöbi
Bruno Sudret
110
64
0
29 May 2017
Uncertainty and sensitivity analysis of functional risk curves based on
  Gaussian processes
Uncertainty and sensitivity analysis of functional risk curves based on Gaussian processes
Bertrand Iooss
Loic Le Gratiet
149
27
0
03 Apr 2017
Global sensitivity analysis using low-rank tensor approximations
Global sensitivity analysis using low-rank tensor approximations
K. Konakli
Bruno Sudret
131
82
0
29 May 2016
Efficient computation of Sobol' indices for stochastic models
Efficient computation of Sobol' indices for stochastic models
Joseph L. Hart
A. Alexanderian
P. Gremaud
158
41
0
19 Feb 2016
1