Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1606.06611
Cited By
v1
v2 (latest)
Divide and Conquer: An Incremental Sparsity Promoting Compressive Sampling Approach for Polynomial Chaos Expansions
21 June 2016
Negin Alemazkoor
Hadi Meidani
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Divide and Conquer: An Incremental Sparsity Promoting Compressive Sampling Approach for Polynomial Chaos Expansions"
8 / 8 papers shown
Title
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
132
11
0
25 Mar 2022
PI-VAE: Physics-Informed Variational Auto-Encoder for stochastic differential equations
Weiheng Zhong
Hadi Meidani
DRL
87
42
0
21 Mar 2022
A general framework of rotational sparse approximation in uncertainty quantification
Mengqi Hu
Y. Lou
Xiu Yang
69
0
0
13 Jan 2021
Automatic selection of basis-adaptive sparse polynomial chaos expansions for engineering applications
Nora Lüthen
S. Marelli
Bruno Sudret
165
31
0
10 Sep 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
169
171
0
04 Feb 2020
A General Framework for Enhancing Sparsity of Generalized Polynomial Chaos Expansions
Xiu Yang
Xiaoliang Wan
Lin Lin
H. Lei
68
10
0
10 Jul 2017
A Near-Optimal Sampling Strategy for Sparse Recovery of Polynomial Chaos Expansions
Negin Alemazkoor
Hadi Meidani
50
20
0
25 Feb 2017
Basis Adaptive Sample Efficient Polynomial Chaos (BASE-PC)
Jerrad Hampton
Alireza Doostan
100
44
0
03 Feb 2017
1