Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1606.07384
Cited By
v1
v2 (latest)
Robust Learning of Fixed-Structure Bayesian Networks
Neural Information Processing Systems (NeurIPS), 2016
23 June 2016
Yu Cheng
Ilias Diakonikolas
D. Kane
Alistair Stewart
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Robust Learning of Fixed-Structure Bayesian Networks"
32 / 32 papers shown
Title
MBGDT:Robust Mini-Batch Gradient Descent
Hanming Wang
Haozheng Luo
Yue Wang
83
5
0
14 Jun 2022
Streaming Algorithms for High-Dimensional Robust Statistics
International Conference on Machine Learning (ICML), 2022
Ilias Diakonikolas
D. Kane
Ankit Pensia
Thanasis Pittas
203
22
0
26 Apr 2022
Robust Estimation for Random Graphs
Annual Conference Computational Learning Theory (COLT), 2021
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
183
9
0
09 Nov 2021
Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean Estimation
Ilias Diakonikolas
D. Kane
Daniel Kongsgaard
Haibin Zhang
Kevin Tian
FedML
160
22
0
16 Jun 2021
Robust Learning of Fixed-Structure Bayesian Networks in Nearly-Linear Time
International Conference on Learning Representations (ICLR), 2021
Yu Cheng
Honghao Lin
OOD
117
0
0
12 May 2021
Outlier-Robust Learning of Ising Models Under Dobrushin's Condition
Annual Conference Computational Learning Theory (COLT), 2021
Ilias Diakonikolas
D. Kane
Alistair Stewart
Yuxin Sun
146
18
0
03 Feb 2021
SGA: A Robust Algorithm for Partial Recovery of Tree-Structured Graphical Models with Noisy Samples
International Conference on Machine Learning (ICML), 2021
Anshoo Tandon
Aldric H. J. Yuan
Vincent Y. F. Tan
126
9
0
22 Jan 2021
Robustly Learning Mixtures of
k
k
k
Arbitrary Gaussians
Symposium on the Theory of Computing (STOC), 2020
Ainesh Bakshi
Ilias Diakonikolas
Hengrui Jia
D. Kane
Pravesh Kothari
Santosh Vempala
270
72
0
03 Dec 2020
The FEDHC Bayesian network learning algorithm
M. Tsagris
198
4
0
30 Nov 2020
List-Decodable Mean Estimation in Nearly-PCA Time
Neural Information Processing Systems (NeurIPS), 2020
Ilias Diakonikolas
D. Kane
Daniel Kongsgaard
Haibin Zhang
Kevin Tian
143
17
0
19 Nov 2020
Robust Mean Estimation on Highly Incomplete Data with Arbitrary Outliers
Lunjia Hu
Omer Reingold
OOD
334
7
0
18 Aug 2020
List-Decodable Mean Estimation via Iterative Multi-Filtering
Ilias Diakonikolas
D. Kane
Daniel Kongsgaard
111
24
0
18 Jun 2020
Robustly Learning any Clusterable Mixture of Gaussians
Ilias Diakonikolas
Samuel B. Hopkins
D. Kane
Sushrut Karmalkar
143
47
0
13 May 2020
Exact Asymptotics for Learning Tree-Structured Graphical Models with Side Information: Noiseless and Noisy Samples
Anshoo Tandon
Vincent Y. F. Tan
Shiyao Zhu
113
7
0
09 May 2020
Outlier-Robust High-Dimensional Sparse Estimation via Iterative Filtering
Neural Information Processing Systems (NeurIPS), 2019
Ilias Diakonikolas
Sushrut Karmalkar
D. Kane
Eric Price
Alistair Stewart
78
41
0
19 Nov 2019
Recent Advances in Algorithmic High-Dimensional Robust Statistics
Ilias Diakonikolas
D. Kane
OOD
193
192
0
14 Nov 2019
Faster Algorithms for High-Dimensional Robust Covariance Estimation
Annual Conference Computational Learning Theory (COLT), 2019
Yu Cheng
Ilias Diakonikolas
Rong Ge
David P. Woodruff
125
67
0
11 Jun 2019
How Hard Is Robust Mean Estimation?
Annual Conference Computational Learning Theory (COLT), 2019
Samuel B. Hopkins
Jerry Li
119
38
0
19 Mar 2019
On resampling vs. adjusting probabilistic graphical models in estimation of distribution algorithms
Mohamed El Yafrani
M. Martins
M. Delgado
Inkyung Sung
R. Lüders
Markus Wagner
TPM
89
0
0
15 Feb 2019
High-Dimensional Robust Mean Estimation in Nearly-Linear Time
ACM-SIAM Symposium on Discrete Algorithms (SODA), 2018
Yu Cheng
Ilias Diakonikolas
Rong Ge
113
126
0
23 Nov 2018
Deep Neural Network Concepts for Background Subtraction: A Systematic Review and Comparative Evaluation
T. Bouwmans
S. Javed
M. Sultana
Soon Ki Jung
135
324
0
13 Nov 2018
Robust Estimation and Generative Adversarial Nets
Chao Gao
Jiyi Liu
Yuan Yao
Weizhi Zhu
226
29
0
04 Oct 2018
Efficient Algorithms and Lower Bounds for Robust Linear Regression
Ilias Diakonikolas
Weihao Kong
Alistair Stewart
175
166
0
31 May 2018
Sever: A Robust Meta-Algorithm for Stochastic Optimization
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Jacob Steinhardt
Alistair Stewart
155
302
0
07 Mar 2018
List-Decodable Robust Mean Estimation and Learning Mixtures of Spherical Gaussians
Ilias Diakonikolas
D. Kane
Alistair Stewart
192
150
0
20 Nov 2017
Learning Geometric Concepts with Nasty Noise
Ilias Diakonikolas
D. Kane
Alistair Stewart
AAML
147
92
0
05 Jul 2017
Robustly Learning a Gaussian: Getting Optimal Error, Efficiently
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
158
139
0
12 Apr 2017
Resilience: A Criterion for Learning in the Presence of Arbitrary Outliers
Jacob Steinhardt
Moses Charikar
Gregory Valiant
239
142
0
15 Mar 2017
Being Robust (in High Dimensions) Can Be Practical
Ilias Diakonikolas
Gautam Kamath
D. Kane
Jerry Li
Ankur Moitra
Alistair Stewart
264
264
0
02 Mar 2017
Robust Sparse Estimation Tasks in High Dimensions
Jerry Li
193
27
0
20 Feb 2017
Testing Bayesian Networks
C. Canonne
Ilias Diakonikolas
D. Kane
Alistair Stewart
TPM
169
74
0
09 Dec 2016
Statistical Query Lower Bounds for Robust Estimation of High-dimensional Gaussians and Gaussian Mixtures
Ilias Diakonikolas
D. Kane
Alistair Stewart
161
241
0
10 Nov 2016
1