ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1606.08561
  4. Cited By
Estimating the class prior and posterior from noisy positives and
  unlabeled data

Estimating the class prior and posterior from noisy positives and unlabeled data

28 June 2016
Shantanu Jain
Martha White
P. Radivojac
    NoLa
ArXivPDFHTML

Papers citing "Estimating the class prior and posterior from noisy positives and unlabeled data"

11 / 11 papers shown
Title
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Deep Positive-Unlabeled Anomaly Detection for Contaminated Unlabeled Data
Hiroshi Takahashi
Tomoharu Iwata
Atsutoshi Kumagai
Yuuki Yamanaka
68
1
0
29 May 2024
Recovering True Classifier Performance in Positive-Unlabeled Learning
Recovering True Classifier Performance in Positive-Unlabeled Learning
Shantanu Jain
Martha White
P. Radivojac
55
46
0
02 Feb 2017
Mixture Proportion Estimation via Kernel Embedding of Distributions
Mixture Proportion Estimation via Kernel Embedding of Distributions
H. G. Ramaswamy
Clayton Scott
Ambuj Tewari
50
198
0
08 Mar 2016
A Mutual Contamination Analysis of Mixed Membership and Partial Label
  Models
A Mutual Contamination Analysis of Mixed Membership and Partial Label Models
Julian Katz-Samuels
Clayton Scott
41
3
0
19 Feb 2016
Nonparametric semi-supervised learning of class proportions
Nonparametric semi-supervised learning of class proportions
Shantanu Jain
Martha White
M. Trosset
P. Radivojac
40
59
0
08 Jan 2016
Class Proportion Estimation with Application to Multiclass Anomaly
  Rejection
Class Proportion Estimation with Application to Multiclass Anomaly Rejection
Tyler Sanderson
Clayton Scott
46
47
0
21 Jun 2013
Classification with Asymmetric Label Noise: Consistency and Maximal
  Denoising
Classification with Asymmetric Label Noise: Consistency and Maximal Denoising
Gilles Blanchard
Marek Flaska
G. Handy
Sara Pozzi
Clayton Scott
NoLa
83
243
0
05 Mar 2013
Obtaining Calibrated Probabilities from Boosting
Obtaining Calibrated Probabilities from Boosting
Alexandru Niculescu-Mizil
R. Caruana
51
200
0
04 Jul 2012
Noise Tolerance under Risk Minimization
Noise Tolerance under Risk Minimization
Naresh Manwani
S. M. I. P. S. Sastry
NoLa
148
273
0
24 Sep 2011
Composite Binary Losses
Composite Binary Losses
Mark D. Reid
Robert C. Williamson
133
223
0
17 Dec 2009
Sample Selection Bias Correction Theory
Sample Selection Bias Correction Theory
Corinna Cortes
M. Mohri
Michael Riley
Afshin Rostamizadeh
98
346
0
19 May 2008
1