ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.03476
17
257

End-to-end training of object class detectors for mean average precision

12 July 2016
Paul Henderson
V. Ferrari
    ObjD
ArXivPDFHTML
Abstract

We present a method for training CNN-based object class detectors directly using mean average precision (mAP) as the training loss, in a truly end-to-end fashion that includes non-maximum suppression (NMS) at training time. This contrasts with the traditional approach of training a CNN for a window classification loss, then applying NMS only at test time, when mAP is used as the evaluation metric in place of classification accuracy. However, mAP following NMS forms a piecewise-constant structured loss over thousands of windows, with gradients that do not convey useful information for gradient descent. Hence, we define new, general gradient-like quantities for piecewise constant functions, which have wide applicability. We describe how to calculate these efficiently for mAP following NMS, enabling to train a detector based on Fast R-CNN directly for mAP. This model achieves equivalent performance to the standard Fast R-CNN on the PASCAL VOC 2007 and 2012 datasets, while being conceptually more appealing as the very same model and loss are used at both training and test time.

View on arXiv
Comments on this paper