ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.04532
  4. Cited By
Should I stay or should I go? A latent threshold approach to large-scale
  mixture innovation models
v1v2v3v4v5 (latest)

Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models

15 July 2016
Florian Huber
G. Kastner
Martin Feldkircher
ArXiv (abs)PDFHTML

Papers citing "Should I stay or should I go? A latent threshold approach to large-scale mixture innovation models"

4 / 4 papers shown
Title
General Bayesian time-varying parameter VARs for predicting government
  bond yields
General Bayesian time-varying parameter VARs for predicting government bond yields
M. Fischer
Niko Hauzenberger
Florian Huber
Michael Pfarrhofer
29
0
0
26 Feb 2021
Inference in Bayesian Additive Vector Autoregressive Tree Models
Inference in Bayesian Additive Vector Autoregressive Tree Models
Florian Huber
Luca Rossini
73
23
0
29 Jun 2020
Sparse Bayesian vector autoregressions in huge dimensions
Sparse Bayesian vector autoregressions in huge dimensions
G. Kastner
Florian Huber
76
95
0
11 Apr 2017
Sparse Bayesian time-varying covariance estimation in many dimensions
Sparse Bayesian time-varying covariance estimation in many dimensions
G. Kastner
70
102
0
30 Aug 2016
1