Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1607.04805
Cited By
Inferring solutions of differential equations using noisy multi-fidelity data
16 July 2016
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Inferring solutions of differential equations using noisy multi-fidelity data"
50 / 77 papers shown
Title
A general physics-constrained method for the modelling of equation's closure terms with sparse data
Tian Chen
Shengping Liu
Li Liu
Heng Yong
PINN
AI4CE
78
0
0
30 Apr 2025
Open-Source High-Speed Flight Surrogate Modeling Framework
Tyler E. Korenyi-Both
Nathan J. Falkiewicz
Matthew C. Jones
AI4CE
61
0
0
06 Nov 2024
GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications
Oisín M. Morrison
F. Pichi
J. Hesthaven
AI4CE
72
6
0
05 Jun 2024
Gaussian Measures Conditioned on Nonlinear Observations: Consistency, MAP Estimators, and Simulation
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
106
1
0
21 May 2024
Reconstructing Blood Flow in Data-Poor Regimes: A Vasculature Network Kernel for Gaussian Process Regression
S. Z. Ashtiani
Mohammad Sarabian
K. Laksari
H. Babaee
52
4
0
14 Mar 2024
PINN-BO: A Black-box Optimization Algorithm using Physics-Informed Neural Networks
Dat Phan-Trong
Hung The Tran
A. Shilton
Sunil R. Gupta
81
0
0
05 Feb 2024
A comprehensive framework for multi-fidelity surrogate modeling with noisy data: a gray-box perspective
Katerina Giannoukou
S. Marelli
Bruno Sudret
AI4CE
33
1
0
12 Jan 2024
A spectrum of physics-informed Gaussian processes for regression in engineering
E. Cross
T. Rogers
D. J. Pitchforth
S. Gibson
Matthew R. Jones
61
9
0
19 Sep 2023
Multi-fidelity reduced-order surrogate modeling
Paolo Conti
Mengwu Guo
Andrea Manzoni
A. Frangi
Steven L. Brunton
N. Kutz
AI4CE
93
28
0
01 Sep 2023
Bayesian Reasoning for Physics Informed Neural Networks
K. Graczyk
Kornel Witkowski
87
0
0
25 Aug 2023
Physics-informed Gaussian process model for Euler-Bernoulli beam elements
Gledson Rodrigo Tondo
Sebastian Rau
I. Kavrakov
Guido Morgenthal
39
5
0
05 Aug 2023
Data-Driven Identification of Quadratic Representations for Nonlinear Hamiltonian Systems using Weakly Symplectic Liftings
Süleyman Yıldız
P. Goyal
Thomas Bendokat
P. Benner
64
10
0
02 Aug 2023
Machine learning with data assimilation and uncertainty quantification for dynamical systems: a review
Sibo Cheng
César Quilodrán-Casas
Said Ouala
A. Farchi
Che Liu
...
Weiping Ding
Yike Guo
A. Carrassi
Marc Bocquet
Rossella Arcucci
AI4CE
81
135
0
18 Mar 2023
A DeepONet multi-fidelity approach for residual learning in reduced order modeling
N. Demo
M. Tezzele
G. Rozza
79
21
0
24 Feb 2023
Physics Informed Neural Network for Dynamic Stress Prediction
H. Bolandi
Gautam Sreekumar
Xuyang Li
N. Lajnef
Vishnu Boddeti
AI4CE
48
23
0
28 Nov 2022
Multi-fidelity Monte Carlo: a pseudo-marginal approach
Diana Cai
Ryan P. Adams
60
6
0
04 Oct 2022
Modelling of physical systems with a Hopf bifurcation using mechanistic models and machine learning
K. H. Lee
David A.W. Barton
L. Renson
69
12
0
07 Sep 2022
Domain-aware Control-oriented Neural Models for Autonomous Underwater Vehicles
Wenceslao Shaw-Cortez
Soumya Vasisht
Aaron Tuor
Ján Drgoňa
D. Vrabie
AI4CE
32
0
0
15 Aug 2022
Multi-fidelity wavelet neural operator with application to uncertainty quantification
A. Thakur
Tapas Tripura
S. Chakraborty
76
12
0
11 Aug 2022
Use of BNNM for interference wave solutions of the gBS-like equation and comparison with PINNs
S. Vadyala
S. N. Betgeri
72
0
0
07 Aug 2022
Physically Consistent Learning of Conservative Lagrangian Systems with Gaussian Processes
G. Evangelisti
Sandra Hirche
51
15
0
24 Jun 2022
A hybrid data driven-physics constrained Gaussian process regression framework with deep kernel for uncertainty quantification
Che-Chia Chang
T. Zeng
GP
50
6
0
13 May 2022
Quantum Extremal Learning
Savvas Varsamopoulos
E. Philip
H. Vlijmen
Sairam Menon
Ann Vos
N. Dyubankova
B. Torfs
Anthony Rowe
V. Elfving
52
6
0
05 May 2022
A Deep Learning Approach for Predicting Two-dimensional Soil Consolidation Using Physics-Informed Neural Networks (PINN)
Yue Lu
Gang Mei
F. Piccialli
PINN
AI4CE
42
29
0
09 Apr 2022
PAGP: A physics-assisted Gaussian process framework with active learning for forward and inverse problems of partial differential equations
Jiahao Zhang
Shiqi Zhang
Guang Lin
81
3
0
06 Apr 2022
Constructing coarse-scale bifurcation diagrams from spatio-temporal observations of microscopic simulations: A parsimonious machine learning approach
Evangelos Galaris
Gianluca Fabiani
I. Gallos
Ioannis G. Kevrekidis
Constantinos Siettos
AI4CE
102
42
0
31 Jan 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
134
1,293
0
14 Jan 2022
Subspace Decomposition based DNN algorithm for elliptic type multi-scale PDEs
Xi-An Li
Z. Xu
Lei Zhang
60
28
0
10 Dec 2021
Learning Free-Surface Flow with Physics-Informed Neural Networks
Raphael Leiteritz
Marcel Hurler
Dirk Pflüger
PINN
AI4CE
53
7
0
17 Nov 2021
Computational Graph Completion
H. Owhadi
82
25
0
20 Oct 2021
Physics-Coupled Spatio-Temporal Active Learning for Dynamical Systems
Yu Huang
Yufei Tang
Xingquan Zhu
Min Shi
Ali Muhamed Ali
H. Zhuang
Laurent Chérubin
AI4CE
57
3
0
11 Aug 2021
Long-time integration of parametric evolution equations with physics-informed DeepONets
Sizhuang He
P. Perdikaris
AI4CE
89
122
0
09 Jun 2021
The Discovery of Dynamics via Linear Multistep Methods and Deep Learning: Error Estimation
Q. Du
Yiqi Gu
Haizhao Yang
Chao Zhou
66
20
0
21 Mar 2021
Gaussian processes meet NeuralODEs: A Bayesian framework for learning the dynamics of partially observed systems from scarce and noisy data
Mohamed Aziz Bhouri
P. Perdikaris
81
21
0
04 Mar 2021
Multi-fidelity regression using artificial neural networks: efficient approximation of parameter-dependent output quantities
Mengwu Guo
Andrea Manzoni
Maurice Amendt
Paolo Conti
J. Hesthaven
184
97
0
26 Feb 2021
Multi-fidelity Bayesian Neural Networks: Algorithms and Applications
Xuhui Meng
H. Babaee
George Karniadakis
59
132
0
19 Dec 2020
Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning
Li Wang
Zhenya Yan
79
85
0
18 Dec 2020
Multi-fidelity data fusion for the approximation of scalar functions with low intrinsic dimensionality through active subspaces
F. Romor
M. Tezzele
G. Rozza
48
4
0
16 Oct 2020
Symplectic Gaussian Process Regression of Hamiltonian Flow Maps
K. Rath
C. Albert
B. Bischl
U. Toussaint
50
29
0
11 Sep 2020
RoeNets: Predicting Discontinuity of Hyperbolic Systems from Continuous Data
S. Xiong
Xingzhe He
Yunjin Tong
Runze Liu
Bo Zhu
AI4CE
8
4
0
07 Jun 2020
A probabilistic generative model for semi-supervised training of coarse-grained surrogates and enforcing physical constraints through virtual observables
Maximilian Rixner
P. Koutsourelakis
AI4CE
85
22
0
02 Jun 2020
Physics-informed Neural Networks for Solving Inverse Problems of Nonlinear Biot's Equations: Batch Training
T. Kadeethum
T. Jørgensen
H. Nick
PINN
AI4CE
147
20
0
18 May 2020
Efficient Characterization of Dynamic Response Variation Using Multi-Fidelity Data Fusion through Composite Neural Network
K. Zhou
Jiong Tang
AI4CE
156
18
0
07 May 2020
Active Training of Physics-Informed Neural Networks to Aggregate and Interpolate Parametric Solutions to the Navier-Stokes Equations
Christopher J. Arthurs
A. King
PINN
152
52
0
02 May 2020
Bayesian differential programming for robust systems identification under uncertainty
Yibo Yang
Mohamed Aziz Bhouri
P. Perdikaris
OOD
121
32
0
15 Apr 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
245
794
0
13 Mar 2020
Physics-informed Neural Networks for Solving Nonlinear Diffusivity and Biot's equations
T. Kadeethum
T. Jørgensen
H. Nick
PINN
AI4CE
108
110
0
19 Feb 2020
Hamiltonian neural networks for solving equations of motion
M. Mattheakis
David Sondak
Akshunna S. Dogra
P. Protopapas
97
59
0
29 Jan 2020
Physics-Guided Machine Learning for Scientific Discovery: An Application in Simulating Lake Temperature Profiles
X. Jia
J. Willard
Anuj Karpatne
J. Read
Jacob Aaron Zwart
M. Steinbach
Vipin Kumar
AI4CE
PINN
107
214
0
28 Jan 2020
SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
Pengzhan Jin
Zhen Zhang
Aiqing Zhu
Yifa Tang
George Karniadakis
105
21
0
11 Jan 2020
1
2
Next