ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.06779
  4. Cited By
Joining and splitting models with Markov melding
v1v2v3 (latest)

Joining and splitting models with Markov melding

22 July 2016
Robert J. B. Goudie
A. Presanis
David J. Lunn
Daniela De Angelis
L. Wernisch
ArXiv (abs)PDFHTML

Papers citing "Joining and splitting models with Markov melding"

8 / 8 papers shown
Title
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Scalable Semi-Modular Inference with Variational Meta-Posteriors
Chris U. Carmona
Geoff K. Nicholls
51
11
0
01 Apr 2022
The divide-and-conquer sequential Monte Carlo algorithm: theoretical
  properties and limit theorems
The divide-and-conquer sequential Monte Carlo algorithm: theoretical properties and limit theorems
Juan Kuntz
F. R. Crucinio
A. M. Johansen
83
11
0
29 Oct 2021
Asymptotics of cut distributions and robust modular inference using
  Posterior Bootstrap
Asymptotics of cut distributions and robust modular inference using Posterior Bootstrap
E. Pompe
Pierre E. Jacob
80
14
0
21 Oct 2021
Divide-and-Conquer Fusion
Divide-and-Conquer Fusion
Ryan S.Y. Chan
M. Pollock
A. M. Johansen
Gareth O. Roberts
47
2
0
14 Oct 2021
Greater Than the Sum of its Parts: Computationally Flexible Bayesian
  Hierarchical Modeling
Greater Than the Sum of its Parts: Computationally Flexible Bayesian Hierarchical Modeling
Devin S. Johnson
Brian M. Brost
M. Hooten
64
3
0
23 Oct 2020
A numerically stable algorithm for integrating Bayesian models using
  Markov melding
A numerically stable algorithm for integrating Bayesian models using Markov melding
A. A. Manderson
Robert J. B. Goudie
53
3
0
22 Jan 2020
Distributed Computation for Marginal Likelihood based Model Choice
Distributed Computation for Marginal Likelihood based Model Choice
Alexander K. Buchholz
Daniel Ahfock
S. Richardson
FedML
66
5
0
10 Oct 2019
MultiBUGS: A parallel implementation of the BUGS modelling framework for
  faster Bayesian inference
MultiBUGS: A parallel implementation of the BUGS modelling framework for faster Bayesian inference
Robert J. B. Goudie
R. Turner
Daniela De Angelis
Andrew Thomas
27
3
0
11 Apr 2017
1