ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1607.06921
  4. Cited By
Estimation and Prediction using generalized Wendland Covariance
  Functions under fixed domain asymptotics
v1v2v3v4 (latest)

Estimation and Prediction using generalized Wendland Covariance Functions under fixed domain asymptotics

23 July 2016
M. Bevilacqua
Tarik Faouzi
Reinhard Furrer
Emilio Porcu
ArXiv (abs)PDFHTML

Papers citing "Estimation and Prediction using generalized Wendland Covariance Functions under fixed domain asymptotics"

35 / 35 papers shown
Title
A class of modular and flexible covariate-based covariance functions for
  nonstationary spatial modeling
A class of modular and flexible covariate-based covariance functions for nonstationary spatial modeling
Federico Blasi
Reinhard Furrer
48
0
0
22 Oct 2024
Smoothness Estimation for Whittle-Matérn Processes on Closed
  Riemannian Manifolds
Smoothness Estimation for Whittle-Matérn Processes on Closed Riemannian Manifolds
Moritz Korte-Stapff
Toni Karvonen
Eric Moulines
52
0
0
31 Dec 2023
Transfer Learning for Bayesian Optimization on Heterogeneous Search
  Spaces
Transfer Learning for Bayesian Optimization on Heterogeneous Search Spaces
Maria-Irina Nicolae
Max Eisele
Zehao Wang
65
9
0
28 Sep 2023
Comparing Scale Parameter Estimators for Gaussian Process Interpolation
  with the Brownian Motion Prior: Leave-One-Out Cross Validation and Maximum
  Likelihood
Comparing Scale Parameter Estimators for Gaussian Process Interpolation with the Brownian Motion Prior: Leave-One-Out Cross Validation and Maximum Likelihood
Masha Naslidnyk
Motonobu Kanagawa
Toni Karvonen
Maren Mahsereci
GP
62
1
0
14 Jul 2023
Random Smoothing Regularization in Kernel Gradient Descent Learning
Random Smoothing Regularization in Kernel Gradient Descent Learning
Liang Ding
Tianyang Hu
Jiahan Jiang
Donghao Li
Wei Cao
Yuan Yao
64
6
0
05 May 2023
HyperBO+: Pre-training a universal prior for Bayesian optimization with
  hierarchical Gaussian processes
HyperBO+: Pre-training a universal prior for Bayesian optimization with hierarchical Gaussian processes
Z. Fan
Xinran Han
Zehao Wang
91
4
0
20 Dec 2022
Comparing two spatial variables with the probability of agreement
Comparing two spatial variables with the probability of agreement
Jonathan Acosta
R. Vallejos
A. Ellison
Felipe Osorio
Mário de Castro
28
1
0
15 Dec 2022
Radial Neighbors for Provably Accurate Scalable Approximations of
  Gaussian Processes
Radial Neighbors for Provably Accurate Scalable Approximations of Gaussian Processes
Yicheng Zhu
M. Peruzzi
Cheng Li
David B. Dunson
73
7
0
27 Nov 2022
Fixed-domain asymptotic properties of maximum composite likelihood
  estimators for max-stable Brown-Resnick random fields
Fixed-domain asymptotic properties of maximum composite likelihood estimators for max-stable Brown-Resnick random fields
Nicolas Chenavier
C. Robert
41
0
0
19 Sep 2022
Nonseparable Space-Time Stationary Covariance Functions on Networks
  cross Time
Nonseparable Space-Time Stationary Covariance Functions on Networks cross Time
Emilio Porcu
P. White
M. Genton
50
2
0
05 Aug 2022
Maximum Likelihood Estimation in Gaussian Process Regression is
  Ill-Posed
Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
Toni Karvonen
Chris J. Oates
GP
78
26
0
17 Mar 2022
Multivariate Gaussian Random Fields over Generalized Product Spaces
  involving the Hypertorus
Multivariate Gaussian Random Fields over Generalized Product Spaces involving the Hypertorus
François Bachoc
A. Peron
Emilio Porcu
41
3
0
22 Feb 2022
Smooth Nested Simulation: Bridging Cubic and Square Root Convergence
  Rates in High Dimensions
Smooth Nested Simulation: Bridging Cubic and Square Root Convergence Rates in High Dimensions
Wei Cao
Yanyuan Wang
Xiaowei Zhang
19
5
0
09 Jan 2022
Asymptotic analysis of ML-covariance parameter estimators based on
  covariance approximations
Asymptotic analysis of ML-covariance parameter estimators based on covariance approximations
Reinhard Furrer
Michael Hediger
36
3
0
23 Dec 2021
A deep look into the Dagum family of isotropic covariance functions
A deep look into the Dagum family of isotropic covariance functions
Tarik Faouzi
Emilio Porcu
I. Kondrashuk
A. Malyarenko
16
7
0
28 Jun 2021
Measuring the robustness of Gaussian processes to kernel choice
Measuring the robustness of Gaussian processes to kernel choice
William T. Stephenson
S. Ghosh
Tin D. Nguyen
Mikhail Yurochkin
Sameer K. Deshpande
Tamara Broderick
GP
35
11
0
11 Jun 2021
Convergence of Gaussian process regression: Optimality, robustness, and
  relationship with kernel ridge regression
Convergence of Gaussian process regression: Optimality, robustness, and relationship with kernel ridge regression
Wei Cao
Bing-Yi Jing
55
6
0
20 Apr 2021
Inference for Gaussian Processes with Matérn Covariogram on Compact
  Riemannian Manifolds
Inference for Gaussian Processes with Matérn Covariogram on Compact Riemannian Manifolds
Didong Li
Wenpin Tang
Sudipto Banerjee
87
14
0
08 Apr 2021
The Gauss Hypergeometric Covariance Kernel for Modeling Second-Order
  Stationary Random Fields in Euclidean Spaces: its Compact Support, Properties
  and Spectral Representation
The Gauss Hypergeometric Covariance Kernel for Modeling Second-Order Stationary Random Fields in Euclidean Spaces: its Compact Support, Properties and Spectral Representation
Xavier Emery
Alfredo Alegría
53
13
0
23 Jan 2021
Flexible Validity Conditions for the Multivariate Matérn Covariance in
  any Spatial Dimension and for any Number of Components
Flexible Validity Conditions for the Multivariate Matérn Covariance in any Spatial Dimension and for any Number of Components
Xavier Emery
Emilio Porcu
P. White
35
2
0
11 Jan 2021
Asymptotic analysis of maximum likelihood estimation of covariance
  parameters for Gaussian processes: an introduction with proofs
Asymptotic analysis of maximum likelihood estimation of covariance parameters for Gaussian processes: an introduction with proofs
François Bachoc
54
13
0
15 Sep 2020
Unifying Compactly Supported and Matern Covariance Functions in Spatial
  Statistics
Unifying Compactly Supported and Matern Covariance Functions in Spatial Statistics
M. Bevilacqua
Christian Caamaño-Carrillo
Emilio Porcu
54
30
0
06 Aug 2020
Asymptotically Equivalent Prediction in Multivariate Geostatistics
Asymptotically Equivalent Prediction in Multivariate Geostatistics
François Bachoc
Emilio Porcu
M. Bevilacqua
Reinhard Furrer
Tarik Faouzi
27
7
0
29 Jul 2020
Necessary and sufficient conditions for asymptotically optimal linear
  prediction of random fields on compact metric spaces
Necessary and sufficient conditions for asymptotically optimal linear prediction of random fields on compact metric spaces
Kristin Kirchner
David Bolin
20
10
0
18 May 2020
A multi-resolution approximation via linear projection for large spatial
  datasets
A multi-resolution approximation via linear projection for large spatial datasets
Toshihiro Hirano
15
1
0
10 Apr 2020
On the Inference of Applying Gaussian Process Modeling to a
  Deterministic Function
On the Inference of Applying Gaussian Process Modeling to a Deterministic Function
Wei Cao
88
19
0
04 Feb 2020
LASSO estimation for spherical autoregressive processes
LASSO estimation for spherical autoregressive processes
Alessia Caponera
C. Durastanti
Anna Vidotto
58
6
0
26 Nov 2019
Beyond Matérn: On A Class of Interpretable Confluent Hypergeometric
  Covariance Functions
Beyond Matérn: On A Class of Interpretable Confluent Hypergeometric Covariance Functions
P. Ma
A. Bhadra
57
11
0
14 Nov 2019
Kriging prediction with isotropic Matérn correlations: Robustness and
  experimental design
Kriging prediction with isotropic Matérn correlations: Robustness and experimental design
Rui Tuo
Wei Cao
107
37
0
13 Nov 2019
On identifiability and consistency of the nugget in Gaussian spatial
  process models
On identifiability and consistency of the nugget in Gaussian spatial process models
Wenpin Tang
Lu Zhang
Sudipto Banerjee
83
40
0
15 Aug 2019
KTBoost: Combined Kernel and Tree Boosting
KTBoost: Combined Kernel and Tree Boosting
Fabio Sigrist
85
27
0
11 Feb 2019
Non-Gaussian Geostatistical Modeling using (skew) t Processes
Non-Gaussian Geostatistical Modeling using (skew) t Processes
M. Bevilacqua
Christian Caamaño-Carrillo
R. Arellano-Valle
Víctor Morales-Oñate
146
20
0
15 Dec 2018
Composite likelihood estimation for a gaussian process under fixed
  domain asymptotics
Composite likelihood estimation for a gaussian process under fixed domain asymptotics
François Bachoc
M. Bevilacqua
D. Velandia
51
12
0
24 Jul 2018
Maximum likelihood estimation for Gaussian processes under inequality
  constraints
Maximum likelihood estimation for Gaussian processes under inequality constraints
François Bachoc
A. Lagnoux
A. F. López-Lopera
87
24
0
10 Apr 2018
Modeling Temporally Evolving and Spatially Globally Dependent Data
Modeling Temporally Evolving and Spatially Globally Dependent Data
Emilio Porcu
Alfredo Alegría
Reinhard Furrer
43
82
0
28 Jun 2017
1