ResearchTrend.AI
  • Papers
  • Communities
  • Organizations
  • Events
  • Blog
  • Pricing
  • Feedback
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.00512
  4. Cited By
Optimal weighted least-squares methods

Optimal weighted least-squares methods

1 August 2016
A. Cohen
G. Migliorati
ArXiv (abs)PDFHTML

Papers citing "Optimal weighted least-squares methods"

39 / 39 papers shown
Title
Verification and Validation for Trustworthy Scientific Machine Learning
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
220
1
0
21 Feb 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
206
1
0
14 Dec 2024
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAttFedMLTDI
148
7
0
02 Oct 2024
Operator Learning Using Random Features: A Tool for Scientific Computing
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
153
16
0
12 Aug 2024
Agnostic Active Learning of Single Index Models with Linear Sample
  Complexity
Agnostic Active Learning of Single Index Models with Linear Sample Complexity
Aarshvi Gajjar
Wai Ming Tai
Xingyu Xu
Chinmay Hegde
Yi Li
Chris Musco
132
10
0
15 May 2024
On Fractional Moment Estimation from Polynomial Chaos Expansion
On Fractional Moment Estimation from Polynomial Chaos Expansion
Lukávs Novák
Marcos Valdebenito
Matthias Faes
81
6
0
04 Mar 2024
Sequential transport maps using SoS density estimation and
  $α$-divergences
Sequential transport maps using SoS density estimation and ααα-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
95
1
0
27 Feb 2024
Physics-constrained polynomial chaos expansion for scientific machine
  learning and uncertainty quantification
Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification
Himanshu Sharma
Lukávs Novák
Michael D. Shields
AI4CE
134
13
0
23 Feb 2024
Optimal sampling for stochastic and natural gradient descent
Optimal sampling for stochastic and natural gradient descent
Robert Gruhlke
A. Nouy
Philipp Trunschke
86
3
0
05 Feb 2024
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
A. Nouy
Bertrand Michel
97
3
0
21 Dec 2023
A unified framework for learning with nonlinear model classes from
  arbitrary linear samples
A unified framework for learning with nonlinear model classes from arbitrary linear samples
Ben Adcock
Juan M. Cardenas
N. Dexter
119
3
0
25 Nov 2023
Random Exploration in Bayesian Optimization: Order-Optimal Regret and
  Computational Efficiency
Random Exploration in Bayesian Optimization: Order-Optimal Regret and Computational Efficiency
Sudeep Salgia
Sattar Vakili
Qing Zhao
119
12
0
23 Oct 2023
Signal reconstruction using determinantal sampling
Signal reconstruction using determinantal sampling
Ayoub Belhadji
Rémi Bardenet
P. Chainais
73
4
0
13 Oct 2023
Improved Active Learning via Dependent Leverage Score Sampling
Improved Active Learning via Dependent Leverage Score Sampling
Atsushi Shimizu
Xiaoou Cheng
Chris Musco
Jonathan Weare
FedML
120
8
0
08 Oct 2023
Physics-Informed Polynomial Chaos Expansions
Physics-Informed Polynomial Chaos Expansions
Lukávs Novák
Himanshu Sharma
Michael D. Shields
92
22
0
04 Sep 2023
CS4ML: A general framework for active learning with arbitrary data based
  on Christoffel functions
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
164
6
0
01 Jun 2023
Self-reinforced polynomial approximation methods for concentrated
  probability densities
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
69
6
0
05 Mar 2023
Active Learning-based Domain Adaptive Localized Polynomial Chaos
  Expansion
Active Learning-based Domain Adaptive Localized Polynomial Chaos Expansion
Lukás Novák
Michael D. Shields
Václav Sadílek
M. Vořechovský
68
9
0
31 Jan 2023
Sampling-based Nyström Approximation and Kernel Quadrature
Sampling-based Nyström Approximation and Kernel Quadrature
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
187
15
0
23 Jan 2023
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Aarshvi Gajjar
Chinmay Hegde
Christopher Musco
155
12
0
24 Oct 2022
CAS4DL: Christoffel Adaptive Sampling for function approximation via
  Deep Learning
CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning
Ben Adcock
Juan M. Cardenas
N. Dexter
121
11
0
25 Aug 2022
Convergence bounds for local least squares approximation
Convergence bounds for local least squares approximation
Philipp Trunschke
81
2
0
23 Aug 2022
A Stable Jacobi polynomials based least squares regression estimator
  associated with an ANOVA decomposition model
A Stable Jacobi polynomials based least squares regression estimator associated with an ANOVA decomposition model
Mohamed Jebalia
Abderrazek Karoui
31
0
0
04 Aug 2022
On efficient algorithms for computing near-best polynomial
  approximations to high-dimensional, Hilbert-valued functions from limited
  samples
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
132
11
0
25 Mar 2022
Gravitational wave surrogates through automated machine learning
Gravitational wave surrogates through automated machine learning
Damián Barsotti
F. Cerino
M. Tiglio
Aarón Villanueva
66
9
0
17 Oct 2021
Convergence bounds for nonlinear least squares and applications to
  tensor recovery
Convergence bounds for nonlinear least squares and applications to tensor recovery
Philipp Trunschke
61
7
0
11 Aug 2021
A block-sparse Tensor Train Format for sample-efficient high-dimensional
  Polynomial Regression
A block-sparse Tensor Train Format for sample-efficient high-dimensional Polynomial Regression
M. Götte
R. Schneider
Philipp Trunschke
57
7
0
29 Apr 2021
Randomized weakly admissible meshes
Randomized weakly admissible meshes
Yiming Xu
A. Narayan
34
13
0
11 Jan 2021
The Statistical Cost of Robust Kernel Hyperparameter Tuning
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
87
2
0
14 Jun 2020
Fourier Sparse Leverage Scores and Approximate Kernel Learning
Fourier Sparse Leverage Scores and Approximate Kernel Learning
T. Erdélyi
Cameron Musco
Christopher Musco
131
23
0
12 Jun 2020
The Random Feature Model for Input-Output Maps between Banach Spaces
The Random Feature Model for Input-Output Maps between Banach Spaces
Nicholas H. Nelsen
Andrew M. Stuart
168
154
0
20 May 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
169
171
0
04 Feb 2020
Boosted optimal weighted least-squares
Boosted optimal weighted least-squares
Cécile Haberstich
A. Nouy
G. Perrin
43
25
0
15 Dec 2019
`Regression Anytime' with Brute-Force SVD Truncation
`Regression Anytime' with Brute-Force SVD Truncation
Christian Bender
Nikolaus Schweizer
21
1
0
22 Aug 2019
A Universal Sampling Method for Reconstructing Signals with Simple
  Fourier Transforms
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
96
50
0
20 Dec 2018
Sequential sampling for optimal weighted least squares approximations in
  hierarchical spaces
Sequential sampling for optimal weighted least squares approximations in hierarchical spaces
B. Arras
M. Bachmayr
A. Cohen
44
22
0
28 May 2018
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal
  Design
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal Design
Paul Diaz
Alireza Doostan
Jerrad Hampton
102
102
0
29 Dec 2017
Least Squares Polynomial Chaos Expansion: A Review of Sampling
  Strategies
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
M. Hadigol
Alireza Doostan
87
134
0
23 Jun 2017
On the Sampling Problem for Kernel Quadrature
On the Sampling Problem for Kernel Quadrature
François‐Xavier Briol
Chris J. Oates
Jon Cockayne
W. Chen
Mark Girolami
105
29
0
11 Jun 2017
1