Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1608.00512
Cited By
Optimal weighted least-squares methods
1 August 2016
A. Cohen
G. Migliorati
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Optimal weighted least-squares methods"
39 / 39 papers shown
Title
Verification and Validation for Trustworthy Scientific Machine Learning
John D. Jakeman
Lorena A. Barba
J. Martins
Thomas O'Leary-Roseberry
AI4CE
220
1
0
21 Feb 2025
ANaGRAM: A Natural Gradient Relative to Adapted Model for efficient PINNs learning
Nilo Schwencke
Cyril Furtlehner
206
1
0
14 Dec 2024
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAtt
FedML
TDI
148
7
0
02 Oct 2024
Operator Learning Using Random Features: A Tool for Scientific Computing
Nicholas H. Nelsen
Andrew M. Stuart
153
16
0
12 Aug 2024
Agnostic Active Learning of Single Index Models with Linear Sample Complexity
Aarshvi Gajjar
Wai Ming Tai
Xingyu Xu
Chinmay Hegde
Yi Li
Chris Musco
132
10
0
15 May 2024
On Fractional Moment Estimation from Polynomial Chaos Expansion
Lukávs Novák
Marcos Valdebenito
Matthias Faes
81
6
0
04 Mar 2024
Sequential transport maps using SoS density estimation and
α
α
α
-divergences
Benjamin Zanger
Tiangang Cui
Martin Schreiber
O. Zahm
95
1
0
27 Feb 2024
Physics-constrained polynomial chaos expansion for scientific machine learning and uncertainty quantification
Himanshu Sharma
Lukávs Novák
Michael D. Shields
AI4CE
134
13
0
23 Feb 2024
Optimal sampling for stochastic and natural gradient descent
Robert Gruhlke
A. Nouy
Philipp Trunschke
86
3
0
05 Feb 2024
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
A. Nouy
Bertrand Michel
97
3
0
21 Dec 2023
A unified framework for learning with nonlinear model classes from arbitrary linear samples
Ben Adcock
Juan M. Cardenas
N. Dexter
119
3
0
25 Nov 2023
Random Exploration in Bayesian Optimization: Order-Optimal Regret and Computational Efficiency
Sudeep Salgia
Sattar Vakili
Qing Zhao
119
12
0
23 Oct 2023
Signal reconstruction using determinantal sampling
Ayoub Belhadji
Rémi Bardenet
P. Chainais
73
4
0
13 Oct 2023
Improved Active Learning via Dependent Leverage Score Sampling
Atsushi Shimizu
Xiaoou Cheng
Chris Musco
Jonathan Weare
FedML
120
8
0
08 Oct 2023
Physics-Informed Polynomial Chaos Expansions
Lukávs Novák
Himanshu Sharma
Michael D. Shields
92
22
0
04 Sep 2023
CS4ML: A general framework for active learning with arbitrary data based on Christoffel functions
Ben Adcock
Juan M. Cardenas
N. Dexter
164
6
0
01 Jun 2023
Self-reinforced polynomial approximation methods for concentrated probability densities
Tiangang Cui
S. Dolgov
O. Zahm
69
6
0
05 Mar 2023
Active Learning-based Domain Adaptive Localized Polynomial Chaos Expansion
Lukás Novák
Michael D. Shields
Václav Sadílek
M. Vořechovský
68
9
0
31 Jan 2023
Sampling-based Nyström Approximation and Kernel Quadrature
Satoshi Hayakawa
Harald Oberhauser
Terry Lyons
187
15
0
23 Jan 2023
Active Learning for Single Neuron Models with Lipschitz Non-Linearities
Aarshvi Gajjar
Chinmay Hegde
Christopher Musco
155
12
0
24 Oct 2022
CAS4DL: Christoffel Adaptive Sampling for function approximation via Deep Learning
Ben Adcock
Juan M. Cardenas
N. Dexter
121
11
0
25 Aug 2022
Convergence bounds for local least squares approximation
Philipp Trunschke
81
2
0
23 Aug 2022
A Stable Jacobi polynomials based least squares regression estimator associated with an ANOVA decomposition model
Mohamed Jebalia
Abderrazek Karoui
31
0
0
04 Aug 2022
On efficient algorithms for computing near-best polynomial approximations to high-dimensional, Hilbert-valued functions from limited samples
Ben Adcock
Simone Brugiapaglia
N. Dexter
S. Moraga
132
11
0
25 Mar 2022
Gravitational wave surrogates through automated machine learning
Damián Barsotti
F. Cerino
M. Tiglio
Aarón Villanueva
66
9
0
17 Oct 2021
Convergence bounds for nonlinear least squares and applications to tensor recovery
Philipp Trunschke
61
7
0
11 Aug 2021
A block-sparse Tensor Train Format for sample-efficient high-dimensional Polynomial Regression
M. Götte
R. Schneider
Philipp Trunschke
57
7
0
29 Apr 2021
Randomized weakly admissible meshes
Yiming Xu
A. Narayan
34
13
0
11 Jan 2021
The Statistical Cost of Robust Kernel Hyperparameter Tuning
R. A. Meyer
Christopher Musco
87
2
0
14 Jun 2020
Fourier Sparse Leverage Scores and Approximate Kernel Learning
T. Erdélyi
Cameron Musco
Christopher Musco
131
23
0
12 Jun 2020
The Random Feature Model for Input-Output Maps between Banach Spaces
Nicholas H. Nelsen
Andrew M. Stuart
168
154
0
20 May 2020
Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
Nora Lüthen
S. Marelli
Bruno Sudret
169
171
0
04 Feb 2020
Boosted optimal weighted least-squares
Cécile Haberstich
A. Nouy
G. Perrin
43
25
0
15 Dec 2019
`Regression Anytime' with Brute-Force SVD Truncation
Christian Bender
Nikolaus Schweizer
21
1
0
22 Aug 2019
A Universal Sampling Method for Reconstructing Signals with Simple Fourier Transforms
H. Avron
Michael Kapralov
Cameron Musco
Christopher Musco
A. Velingker
A. Zandieh
96
50
0
20 Dec 2018
Sequential sampling for optimal weighted least squares approximations in hierarchical spaces
B. Arras
M. Bachmayr
A. Cohen
44
22
0
28 May 2018
Sparse Polynomial Chaos Expansions via Compressed Sensing and D-optimal Design
Paul Diaz
Alireza Doostan
Jerrad Hampton
102
102
0
29 Dec 2017
Least Squares Polynomial Chaos Expansion: A Review of Sampling Strategies
M. Hadigol
Alireza Doostan
87
134
0
23 Jun 2017
On the Sampling Problem for Kernel Quadrature
François‐Xavier Briol
Chris J. Oates
Jon Cockayne
W. Chen
Mark Girolami
105
29
0
11 Jun 2017
1