Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1608.04320
Cited By
v1
v2 (latest)
Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated
Neural Information Processing Systems (NeurIPS), 2016
15 August 2016
Namrata Vaswani
Han Guo
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Correlated-PCA: Principal Components' Analysis when Data and Noise are Correlated"
9 / 9 papers shown
Title
Matrix Normal PCA for Interpretable Dimension Reduction and Graphical Noise Modeling
Pattern Recognition (Pattern Recognit.), 2019
Chihao Zhang
Kuo Gai
Shihua Zhang
197
16
0
25 Nov 2019
Heteroskedastic PCA: Algorithm, Optimality, and Applications
Anru R. Zhang
T. Tony Cai
Yihong Wu
388
79
0
19 Oct 2018
Static and Dynamic Robust PCA and Matrix Completion: A Review
Proceedings of the IEEE (Proc. IEEE), 2018
Namrata Vaswani
Praneeth Narayanamurthy
210
78
0
01 Mar 2018
Nearly Optimal Robust Subspace Tracking
Praneeth Narayanamurthy
Namrata Vaswani
249
9
0
17 Dec 2017
Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery
Namrata Vaswani
T. Bouwmans
S. Javed
Praneeth Narayanamurthy
OOD
357
294
0
26 Nov 2017
Finite Sample Guarantees for PCA in Non-Isotropic and Data-Dependent Noise
Namrata Vaswani
Praneeth Narayanamurthy
134
21
0
19 Sep 2017
Provable Dynamic Robust PCA or Robust Subspace Tracking
Praneeth Narayanamurthy
Namrata Vaswani
210
49
0
24 May 2017
Asymptotic performance of PCA for high-dimensional heteroscedastic data
David Hong
Laura Balzano
Jeffrey A. Fessler
308
61
0
20 Mar 2017
PCA in Data-Dependent Noise (Correlated-PCA): Nearly Optimal Finite Sample Guarantees
Namrata Vaswani
Praneeth Narayanamurthy
203
2
0
10 Feb 2017
1