ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1608.08852
  4. Cited By
A Mathematical Framework for Feature Selection from Real-World Data with
  Non-Linear Observations

A Mathematical Framework for Feature Selection from Real-World Data with Non-Linear Observations

31 August 2016
Martin Genzel
Gitta Kutyniok
ArXiv (abs)PDFHTML

Papers citing "A Mathematical Framework for Feature Selection from Real-World Data with Non-Linear Observations"

3 / 3 papers shown
Robust 1-Bit Compressed Sensing via Hinge Loss Minimization
Robust 1-Bit Compressed Sensing via Hinge Loss Minimization
Martin Genzel
A. Stollenwerk
152
7
0
13 Apr 2018
Neural Factorization Machines for Sparse Predictive Analytics
Neural Factorization Machines for Sparse Predictive Analytics
Xiangnan He
Tat-Seng Chua
289
1,379
0
16 Aug 2017
Sparse Proteomics Analysis - A compressed sensing-based approach for
  feature selection and classification of high-dimensional proteomics mass
  spectrometry data
Sparse Proteomics Analysis - A compressed sensing-based approach for feature selection and classification of high-dimensional proteomics mass spectrometry dataBMC Bioinformatics (BMC Bioinformatics), 2015
Tim Conrad
Martin Genzel
Nada Cvetkovic
Niklas Wulkow
A. Leichtle
J. Vybíral
Gitta Kutyniok
Christof Schütte
228
35
0
11 Jun 2015
1
Page 1 of 1