Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
All Papers
0 / 0 papers shown
Title
Home
Papers
1608.08967
Cited By
Robustness of classifiers: from adversarial to random noise
31 August 2016
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Robustness of classifiers: from adversarial to random noise"
50 / 185 papers shown
Title
A Survey On Universal Adversarial Attack
International Joint Conference on Artificial Intelligence (IJCAI), 2021
Chaoning Zhang
Philipp Benz
Chenguo Lin
Adil Karjauv
Jing Wu
In So Kweon
AAML
255
102
0
02 Mar 2021
Universal Adversarial Perturbations Through the Lens of Deep Steganography: Towards A Fourier Perspective
AAAI Conference on Artificial Intelligence (AAAI), 2021
Chaoning Zhang
Philipp Benz
Adil Karjauv
In So Kweon
AAML
191
46
0
12 Feb 2021
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson
Ziye Ma
Jingqi Li
Somayeh Sojoudi
470
1
0
22 Jan 2021
Heating up decision boundaries: isocapacitory saturation, adversarial scenarios and generalization bounds
International Conference on Learning Representations (ICLR), 2021
B. Georgiev
L. Franken
Mayukh Mukherjee
AAML
104
2
0
15 Jan 2021
Unlearnable Examples: Making Personal Data Unexploitable
International Conference on Learning Representations (ICLR), 2021
Hanxun Huang
Jiabo He
S. Erfani
James Bailey
Yisen Wang
MIACV
458
230
0
13 Jan 2021
Characterizing the Evasion Attackability of Multi-label Classifiers
AAAI Conference on Artificial Intelligence (AAAI), 2020
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
150
11
0
17 Dec 2020
Achieving Adversarial Robustness Requires An Active Teacher
Journal of Computational Mathematics (JCM), 2020
Chao Ma
Lexing Ying
122
1
0
14 Dec 2020
Certifying Incremental Quadratic Constraints for Neural Networks via Convex Optimization
Conference on Learning for Dynamics & Control (L4DC), 2020
Navid Hashemi
Justin Ruths
Mahyar Fazlyab
322
23
0
10 Dec 2020
SurFree: a fast surrogate-free black-box attack
Computer Vision and Pattern Recognition (CVPR), 2020
Thibault Maho
Teddy Furon
Erwan Le Merrer
AAML
157
108
0
25 Nov 2020
Sparse PCA: Algorithms, Adversarial Perturbations and Certificates
IEEE Annual Symposium on Foundations of Computer Science (FOCS), 2020
Tommaso dÓrsi
Pravesh Kothari
Gleb Novikov
David Steurer
AAML
247
27
0
12 Nov 2020
Optimism in the Face of Adversity: Understanding and Improving Deep Learning through Adversarial Robustness
Proceedings of the IEEE (Proc. IEEE), 2020
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
316
50
0
19 Oct 2020
Certifying Neural Network Robustness to Random Input Noise from Samples
Brendon G. Anderson
Somayeh Sojoudi
AAML
122
9
0
15 Oct 2020
Data-Driven Certification of Neural Networks with Random Input Noise
IEEE Transactions on Control of Network Systems (TCNS), 2020
Brendon G. Anderson
Somayeh Sojoudi
AAML
319
12
0
02 Oct 2020
Achieving Adversarial Robustness via Sparsity
Machine-mediated learning (ML), 2020
Shu-Fan Wang
Ningyi Liao
Liyao Xiang
Nanyang Ye
Quanshi Zhang
AAML
155
18
0
11 Sep 2020
BREEDS: Benchmarks for Subpopulation Shift
International Conference on Learning Representations (ICLR), 2020
Shibani Santurkar
Dimitris Tsipras
Aleksander Madry
OOD
187
189
0
11 Aug 2020
Adversarial Examples on Object Recognition: A Comprehensive Survey
ACM Computing Surveys (ACM CSUR), 2020
A. Serban
E. Poll
Joost Visser
AAML
361
78
0
07 Aug 2020
A General Framework For Detecting Anomalous Inputs to DNN Classifiers
International Conference on Machine Learning (ICML), 2020
Jayaram Raghuram
Varun Chandrasekaran
S. Jha
Suman Banerjee
AAML
223
38
0
29 Jul 2020
Learning from Noisy Labels with Deep Neural Networks: A Survey
IEEE Transactions on Neural Networks and Learning Systems (IEEE TNNLS), 2020
Hwanjun Song
Minseok Kim
Dongmin Park
Yooju Shin
Jae-Gil Lee
NoLa
974
1,176
0
16 Jul 2020
Towards robust sensing for Autonomous Vehicles: An adversarial perspective
IEEE Signal Processing Magazine (IEEE Signal Process. Mag.), 2020
Apostolos Modas
Ricardo Sánchez-Matilla
P. Frossard
Andrea Cavallaro
AAML
178
39
0
14 Jul 2020
Understanding Adversarial Examples from the Mutual Influence of Images and Perturbations
Computer Vision and Pattern Recognition (CVPR), 2020
Chaoning Zhang
Philipp Benz
Tooba Imtiaz
In-So Kweon
SSL
AAML
170
134
0
13 Jul 2020
Towards an Adversarially Robust Normalization Approach
Muhammad Awais
Fahad Shamshad
Sung-Ho Bae
AAML
OOD
190
21
0
19 Jun 2020
Lipschitz Bounds and Provably Robust Training by Laplacian Smoothing
Vishaal Krishnan
Abed AlRahman Al Makdah
Fabio Pasqualetti
OOD
AAML
242
25
0
05 Jun 2020
Enhancing Resilience of Deep Learning Networks by Means of Transferable Adversaries
IEEE International Joint Conference on Neural Network (IJCNN), 2020
M. Seiler
Heike Trautmann
P. Kerschke
AAML
80
0
0
27 May 2020
Arms Race in Adversarial Malware Detection: A Survey
Deqiang Li
Qianmu Li
Yanfang Ye
Shouhuai Xu
AAML
226
55
0
24 May 2020
Increasing-Margin Adversarial (IMA) Training to Improve Adversarial Robustness of Neural Networks
Linhai Ma
Liang Liang
AAML
750
21
0
19 May 2020
Adversarial Robustness Guarantees for Random Deep Neural Networks
International Conference on Machine Learning (ICML), 2020
Giacomo De Palma
B. Kiani
S. Lloyd
AAML
OOD
131
9
0
13 Apr 2020
GeoDA: a geometric framework for black-box adversarial attacks
Computer Vision and Pattern Recognition (CVPR), 2020
A. Rahmati
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
H. Dai
MLAU
AAML
209
129
0
13 Mar 2020
Analyzing Accuracy Loss in Randomized Smoothing Defenses
Yue Gao
Harrison Rosenberg
Kassem Fawaz
S. Jha
Justin Hsu
AAML
148
6
0
03 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Computer Vision and Pattern Recognition (CVPR), 2020
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
313
72
0
02 Mar 2020
Randomization matters. How to defend against strong adversarial attacks
International Conference on Machine Learning (ICML), 2020
Rafael Pinot
Raphael Ettedgui
Geovani Rizk
Y. Chevaleyre
Jamal Atif
AAML
233
62
0
26 Feb 2020
Mitigating Class Boundary Label Uncertainty to Reduce Both Model Bias and Variance
ACM Transactions on Knowledge Discovery from Data (TKDD), 2020
Matthew Almeida
Wei Ding
S. Crouter
Ping Chen
99
13
0
23 Feb 2020
Boosting Adversarial Training with Hypersphere Embedding
Neural Information Processing Systems (NeurIPS), 2020
Tianyu Pang
Xiao Yang
Yinpeng Dong
Kun Xu
Jun Zhu
Hang Su
AAML
304
161
0
20 Feb 2020
Hold me tight! Influence of discriminative features on deep network boundaries
Neural Information Processing Systems (NeurIPS), 2020
Guillermo Ortiz-Jiménez
Apostolos Modas
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
189
51
0
15 Feb 2020
A simple way to make neural networks robust against diverse image corruptions
E. Rusak
Lukas Schott
Roland S. Zimmermann
Julian Bitterwolf
Oliver Bringmann
Matthias Bethge
Wieland Brendel
243
65
0
16 Jan 2020
Design of optical neural networks with component imprecisions
Optics Express (OE), 2019
Michael Y.-S. Fang
S. Manipatruni
Casimir Wierzynski
A. Khosrowshahi
M. DeWeese
147
141
0
13 Dec 2019
Walking on the Edge: Fast, Low-Distortion Adversarial Examples
IEEE Transactions on Information Forensics and Security (IEEE TIFS), 2019
Hanwei Zhang
Yannis Avrithis
Teddy Furon
Laurent Amsaleg
AAML
160
53
0
04 Dec 2019
Loss Aware Post-training Quantization
Machine-mediated learning (ML), 2019
Yury Nahshan
Brian Chmiel
Chaim Baskin
Evgenii Zheltonozhskii
Ron Banner
A. Bronstein
A. Mendelson
MQ
301
184
0
17 Nov 2019
Learning To Characterize Adversarial Subspaces
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2019
Xiaofeng Mao
YueFeng Chen
Yuhong Li
Yuan He
Hui Xue
AAML
124
13
0
15 Nov 2019
On Model Robustness Against Adversarial Examples
Shufei Zhang
Kaizhu Huang
Zenglin Xu
AAML
182
0
0
15 Nov 2019
On Robustness to Adversarial Examples and Polynomial Optimization
Neural Information Processing Systems (NeurIPS), 2019
Pranjal Awasthi
Abhratanu Dutta
Aravindan Vijayaraghavan
OOD
AAML
148
34
0
12 Nov 2019
Directional Adversarial Training for Cost Sensitive Deep Learning Classification Applications
Engineering applications of artificial intelligence (EAAI), 2019
M. Terzi
Gian Antonio Susto
Pratik Chaudhari
OOD
AAML
122
17
0
08 Oct 2019
Yet another but more efficient black-box adversarial attack: tiling and evolution strategies
Laurent Meunier
Cen Chen
Li Wang
MLAU
AAML
210
42
0
05 Oct 2019
Lower Bounds on Adversarial Robustness from Optimal Transport
Neural Information Processing Systems (NeurIPS), 2019
A. Bhagoji
Daniel Cullina
Prateek Mittal
OOD
OT
AAML
160
97
0
26 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
International Conference on Learning Representations (ICLR), 2019
Tianyu Pang
Kun Xu
Jun Zhu
AAML
183
111
0
25 Sep 2019
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
International Journal of Automation and Computing (IJAC), 2019
Han Xu
Yao Ma
Haochen Liu
Debayan Deb
Hui Liu
Shucheng Zhou
Anil K. Jain
AAML
271
725
0
17 Sep 2019
On the Hardness of Robust Classification
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
136
44
0
12 Sep 2019
PDA: Progressive Data Augmentation for General Robustness of Deep Neural Networks
Hang Yu
Aishan Liu
Xianglong Liu
Gen Li
Ping Luo
R. Cheng
Jichen Yang
Chongzhi Zhang
AAML
147
12
0
11 Sep 2019
Are Adversarial Robustness and Common Perturbation Robustness Independent Attributes ?
Alfred Laugros
A. Caplier
Matthieu Ospici
AAML
140
44
0
04 Sep 2019
Automated Corrosion Detection Using Crowd Sourced Training for Deep Learning
W. Nash
Courtney Powell
Tom Drummond
N. Birbilis
55
33
0
04 Aug 2019
Adversarial Robustness via Label-Smoothing
Morgane Goibert
Elvis Dohmatob
AAML
199
18
0
27 Jun 2019
Previous
1
2
3
4
Next