ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1609.02469
  4. Cited By
Quantifying Radiographic Knee Osteoarthritis Severity using Deep
  Convolutional Neural Networks

Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

8 September 2016
Joseph Antony
Kevin McGuinness
Noel E. O'Connor
Kieran Moran
    MedIm
ArXivPDFHTML

Papers citing "Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks"

14 / 14 papers shown
Title
Shifting Focus: From Global Semantics to Local Prominent Features in
  Swin-Transformer for Knee Osteoarthritis Severity Assessment
Shifting Focus: From Global Semantics to Local Prominent Features in Swin-Transformer for Knee Osteoarthritis Severity Assessment
Aymen Sekhri
Marouane Tliba
M. A. Kerkouri
Yassine Nasser
Aladine Chetouani
Alessandro Bruno
Rachid Jennane
37
0
0
15 Mar 2024
Improving Image Classification of Knee Radiographs: An Automated Image
  Labeling Approach
Improving Image Classification of Knee Radiographs: An Automated Image Labeling Approach
Jikai Zhang
Carlos Santos
Christine Park
Maciej A. Mazurowski
R. Colglazier
29
2
0
06 Sep 2023
A Neural Template Matching Method to Detect Knee Joint Areas
A Neural Template Matching Method to Detect Knee Joint Areas
Juha Tiirola
MedIm
11
1
0
23 Sep 2022
Knee Cartilage Defect Assessment by Graph Representation and Surface
  Convolution
Knee Cartilage Defect Assessment by Graph Representation and Surface Convolution
Zixu Zhuang
Liping Si
Sheng Wang
Kai Xuan
Xi Ouyang
...
Zhong Xue
Lichi Zhang
Dinggang Shen
Weiwu Yao
Qian Wang
37
5
0
12 Jan 2022
A Lightweight CNN and Joint Shape-Joint Space (JS2) Descriptor for
  Radiological Osteoarthritis Detection
A Lightweight CNN and Joint Shape-Joint Space (JS2) Descriptor for Radiological Osteoarthritis Detection
N. Bayramoglu
M. Nieminen
S. Saarakkala
MedIm
11
7
0
24 May 2020
A Self-ensembling Framework for Semi-supervised Knee Cartilage Defects
  Assessment with Dual-Consistency
A Self-ensembling Framework for Semi-supervised Knee Cartilage Defects Assessment with Dual-Consistency
Jiayu Huo
Liping Si
Xi Ouyang
Kai Xuan
Weiwu Yao
Z. Xue
Qian Wang
Dinggang Shen
Lichi Zhang
38
1
0
19 May 2020
Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale
  from Radiographs Using Convolutional Neural Networks
Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale from Radiographs Using Convolutional Neural Networks
Sudeep Kondal
V. Kulkarni
A. Gaikwad
A. Kharat
Aniruddha Pant
MedIm
14
13
0
18 Apr 2020
Deep learning predicts total knee replacement from magnetic resonance
  images
Deep learning predicts total knee replacement from magnetic resonance images
Aniket A. Tolpadi
Jinhee J. Lee
V. Pedoia
S. Majumdar
MedIm
AI4CE
21
95
0
24 Feb 2020
Adaptive Segmentation of Knee Radiographs for Selecting the Optimal ROI
  in Texture Analysis
Adaptive Segmentation of Knee Radiographs for Selecting the Optimal ROI in Texture Analysis
N. Bayramoglu
A. Tiulpin
J. Hirvasniemi
M. Nieminen
S. Saarakkala
19
30
0
21 Aug 2019
Automatic Grading of Individual Knee Osteoarthritis Features in Plain
  Radiographs using Deep Convolutional Neural Networks
Automatic Grading of Individual Knee Osteoarthritis Features in Plain Radiographs using Deep Convolutional Neural Networks
A. Tiulpin
S. Saarakkala
23
121
0
18 Jul 2019
Multimodal Machine Learning-based Knee Osteoarthritis Progression
  Prediction from Plain Radiographs and Clinical Data
Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data
A. Tiulpin
S. Klein
S. Bierma-Zeinstra
J. Thevenot
Esa Rahtu
J. Meurs
E. H. Oei
S. Saarakkala
AI4CE
25
198
0
12 Apr 2019
Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and
  Future Directions
Going Deep in Medical Image Analysis: Concepts, Methods, Challenges and Future Directions
F. Altaf
Syed Mohammed Shamsul Islam
Naveed Akhtar
N. Janjua
OOD
29
200
0
15 Feb 2019
Not-so-supervised: a survey of semi-supervised, multi-instance, and
  transfer learning in medical image analysis
Not-so-supervised: a survey of semi-supervised, multi-instance, and transfer learning in medical image analysis
V. Cheplygina
Marleen de Bruijne
J. Pluim
16
745
0
17 Apr 2018
A Survey on Deep Learning in Medical Image Analysis
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
340
10,633
0
19 Feb 2017
1