Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1609.02815
Cited By
v1
v2
v3 (latest)
By-passing the Kohn-Sham equations with machine learning
9 September 2016
Felix Brockherde
Leslie Vogt
Li Li
M. Tuckerman
K. Burke
K. Müller
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"By-passing the Kohn-Sham equations with machine learning"
50 / 88 papers shown
Title
Predicting fermionic densities using a Projected Quantum Kernel method
Francesco Perciavalle
Francesco Plastina
Michele Pisarra
Nicola Lo Gullo
139
0
0
18 Apr 2025
Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
Sergei Manzhos
Johann Luder
Manabu Ihara
Manabu Ihara
116
0
0
08 Feb 2025
E3STO: Orbital Inspired SE(3)-Equivariant Molecular Representation for Electron Density Prediction
Ilan Mitnikov
Joseph Jacobson
90
0
0
08 Oct 2024
Machine learning approach for vibronically renormalized electronic band structures
Niraj Aryal
Sheng Zhang
Weiguo Yin
Gia-Wei Chern
150
0
0
03 Sep 2024
Accelerating Electron Dynamics Simulations through Machine Learned Time Propagators
Karan Shah
A. Cangi
AI4CE
112
1
0
12 Jul 2024
NeuralSCF: Neural network self-consistent fields for density functional theory
Feitong Song
Ji Feng
70
1
0
22 Jun 2024
A Recipe for Charge Density Prediction
Xiang Fu
Andrew S. Rosen
Kyle Bystrom
Rui Wang
Albert Musaelian
Boris Kozinsky
Tess E. Smidt
Tommi Jaakkola
94
6
0
29 May 2024
3DReact: Geometric deep learning for chemical reactions
Puck van Gerwen
K. Briling
Charlotte Bunne
Vignesh Ram Somnath
Rubén Laplaza
Andreas Krause
C. Corminboeuf
3DV
86
8
0
13 Dec 2023
Higher-Order Equivariant Neural Networks for Charge Density Prediction in Materials
Teddy Koker
Keegan Quigley
Eric Taw
Kevin Tibbetts
Lin Li
68
15
0
08 Dec 2023
Alpha Zero for Physics: Application of Symbolic Regression with Alpha Zero to find the analytical methods in physics
Yoshihiro Michishita
AI4CE
85
2
0
21 Nov 2023
Equivariant Neural Operator Learning with Graphon Convolution
Chaoran Cheng
Jian-wei Peng
45
5
0
17 Nov 2023
Degeneration of kernel regression with Matern kernels into low-order polynomial regression in high dimension
Sergei Manzhos
Manabu Ihara
90
8
0
17 Nov 2023
Electronic excited states from physically-constrained machine learning
Edoardo Cignoni
Divya Suman
Jigyasa Nigam
Lorenzo Cupellini
B. Mennucci
Michele Ceriotti
63
17
0
01 Nov 2023
Machine learning for accuracy in density functional approximations
Johannes Voss
AI4CE
44
3
0
01 Nov 2023
Towards Combinatorial Generalization for Catalysts: A Kohn-Sham Charge-Density Approach
Phillip Pope
David Jacobs
59
3
0
28 Oct 2023
Overcoming the Barrier of Orbital-Free Density Functional Theory for Molecular Systems Using Deep Learning
He Zhang
Siyuan Liu
Jiacheng You
Chang-Shu Liu
Shuxin Zheng
Ziheng Lu
Tong Wang
Nanning Zheng
Jia Zhang
77
22
0
28 Sep 2023
Grad DFT: a software library for machine learning enhanced density functional theory
Pablo Antonio Moreno Casares
Jack S. Baker
Matija Medvidović
Roberto Dos Reis
J. M. Arrazola
100
9
0
23 Sep 2023
Physics-inspired Equivariant Descriptors of Non-bonded Interactions
Kevin K. Huguenin-Dumittan
P. Loche
Haoran Ni
Michele Ceriotti
30
22
0
25 Aug 2023
Materials Informatics: An Algorithmic Design Rule
B. Bishnoi
58
0
0
05 May 2023
Wigner kernels: body-ordered equivariant machine learning without a basis
Filippo Bigi
Sergey Pozdnyakov
Michele Ceriotti
54
16
0
07 Mar 2023
SchNetPack 2.0: A neural network toolbox for atomistic machine learning
Kristof T. Schütt
Stefaan S. P. Hessmann
Niklas W. A. Gebauer
Jonas Lederer
M. Gastegger
78
65
0
11 Dec 2022
The loss of the property of locality of the kernel in high-dimensional Gaussian process regression on the example of the fitting of molecular potential energy surfaces
Sergei Manzhos
Manabu Ihara
GP
18
6
0
21 Nov 2022
Embed and Emulate: Learning to estimate parameters of dynamical systems with uncertainty quantification
Ruoxi Jiang
Rebecca Willett
61
7
0
03 Nov 2022
Accelerating hypersonic reentry simulations using deep learning-based hybridization (with guarantees)
Paul Novello
Gaël Poëtte
D. Lugato
S. Peluchon
P. Congedo
AI4CE
71
8
0
27 Sep 2022
A machine learning approach to predict the structural and magnetic properties of Heusler alloy families
S. Mitra
Aquil Ahmad
Sajib Biswas
A. Das
27
16
0
07 Aug 2022
Molecular-orbital-based Machine Learning for Open-shell and Multi-reference Systems with Kernel Addition Gaussian Process Regression
Lixue Cheng
Jiace Sun
J. E. Deustua
Vignesh C. Bhethanabotla
Thomas F. Miller
39
7
0
17 Jul 2022
Electronic-structure properties from atom-centered predictions of the electron density
Andrea Grisafi
Alan M Lewis
M. Rossi
Michele Ceriotti
90
20
0
28 Jun 2022
Molecular Dipole Moment Learning via Rotationally Equivariant Gaussian Process Regression with Derivatives in Molecular-orbital-based Machine Learning
Jiace Sun
Lixue Cheng
Thomas F. Miller
74
3
0
31 May 2022
Machine Learning Diffusion Monte Carlo Energies
Kevin Ryczko
J. Krogel
Isaac Tamblyn
DiffM
29
14
0
09 May 2022
Putting Density Functional Theory to the Test in Machine-Learning-Accelerated Materials Discovery
Chenru Duan
Fan Liu
Aditya Nandy
Heather J. Kulik
AI4CE
39
34
0
06 May 2022
Accurate Molecular-Orbital-Based Machine Learning Energies via Unsupervised Clustering of Chemical Space
Lixue Cheng
Jiace Sun
Thomas F. Miller
48
13
0
21 Apr 2022
DiffMD: A Geometric Diffusion Model for Molecular Dynamics Simulations
Fang Wu
Stan Z. Li
DiffM
60
33
0
19 Apr 2022
Evolving symbolic density functionals
He Ma
Arunachalam Narayanaswamy
Patrick F. Riley
Li Li
142
32
0
03 Mar 2022
Prediction of the electron density of states for crystalline compounds with Atomistic Line Graph Neural Networks (ALIGNN)
Prathik R. Kaundinya
K. Choudhary
S. Kalidindi
41
29
0
20 Jan 2022
Descriptors for Machine Learning Model of Generalized Force Field in Condensed Matter Systems
Puhan Zhang
Sheng Zhang
Gia-Wei Chern
AI4CE
36
11
0
03 Jan 2022
Machine learning nonequilibrium electron forces for adiabatic spin dynamics
Puhan Zhang
Gia-Wei Chern
42
16
0
22 Dec 2021
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
52
37
0
01 Dec 2021
Reducing the Long Tail Losses in Scientific Emulations with Active Learning
Yi Heng Lim
M. F. Kasim
39
0
0
15 Nov 2021
Audacity of huge: overcoming challenges of data scarcity and data quality for machine learning in computational materials discovery
Aditya Nandy
Chenru Duan
Heather J. Kulik
AI4CE
131
47
0
02 Nov 2021
How Well Does Kohn-Sham Regularizer Work for Weakly Correlated Systems?
Bhupalee Kalita
Ryan Pederson
Jielun Chen
Li Li
K. Burke
108
9
0
28 Oct 2021
Geometric Transformer for End-to-End Molecule Properties Prediction
Yoni Choukroun
Lior Wolf
AI4CE
ViT
78
16
0
26 Oct 2021
Deep learning for surrogate modelling of 2D mantle convection
Siddhant Agarwal
Nicola Tosi
Pan Kessel
D. Breuer
G. Montavon
AI4TS
AI4CE
72
8
0
23 Aug 2021
SE(3)-equivariant prediction of molecular wavefunctions and electronic densities
Oliver T. Unke
Mihail Bogojeski
M. Gastegger
Mario Geiger
Tess E. Smidt
Klaus-Robert Muller
86
94
0
04 Jun 2021
Learning the exchange-correlation functional from nature with fully differentiable density functional theory
M. F. Kasim
S. Vinko
174
69
0
08 Feb 2021
Bayesian neural networks for weak solution of PDEs with uncertainty quantification
Xiaoxuan Zhang
K. Garikipati
AI4CE
86
12
0
13 Jan 2021
On the equivalence of molecular graph convolution and molecular wave function with poor basis set
Masashi Tsubaki
T. Mizoguchi
31
9
0
16 Nov 2020
Quantum deep field: data-driven wave function, electron density generation, and atomization energy prediction and extrapolation with machine learning
Masashi Tsubaki
T. Mizoguchi
55
37
0
16 Nov 2020
Uncertainty estimation for molecular dynamics and sampling
G. Imbalzano
Yongbin Zhuang
V. Kapil
K. Rossi
Edgar A. Engel
Federico Grasselli
Michele Ceriotti
38
5
0
10 Nov 2020
DeepDFT: Neural Message Passing Network for Accurate Charge Density Prediction
Peter Bjørn Jørgensen
Arghya Bhowmik
38
22
0
04 Nov 2020
Machine learning of solvent effects on molecular spectra and reactions
M. Gastegger
Kristof T. Schütt
Klaus-Robert Muller
AI4CE
61
62
0
28 Oct 2020
1
2
Next