Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.01271
Cited By
Generalized Random Forests
5 October 2016
Susan Athey
J. Tibshirani
Stefan Wager
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generalized Random Forests"
50 / 85 papers shown
Title
Improving Random Forests by Smoothing
Ziyi Liu
Phuc Luong
Mario Boley
Daniel F. Schmidt
UQCV
37
0
0
11 May 2025
Overview and practical recommendations on using Shapley Values for identifying predictive biomarkers via CATE modeling
David Svensson
Erik Hermansson
N. Nikolaou
Konstantinos Sechidis
Ilya Lipkovich
CML
51
0
0
02 May 2025
Pre-Training Estimators for Structural Models: Application to Consumer Search
Yanhao 'Max' Wei
Zhenling Jiang
31
0
0
01 May 2025
Consistent Causal Inference of Group Effects in Non-Targeted Trials with Finitely Many Effect Levels
Georgios Mavroudeas
M. Magdon-Ismail
Kristin P. Bennett
Jason Kuruzovich
24
0
0
22 Apr 2025
A New Transformation Approach for Uplift Modeling with Binary Outcome
Kun Li
Jiang Tian
34
0
0
10 Jan 2025
Double Machine Learning for Static Panel Models with Fixed Effects
Paul Clarke
Annalivia Polselli
52
2
0
03 Jan 2025
Segment Discovery: Enhancing E-commerce Targeting
Qiqi Li
Roopali Singh
Charin Polpanumas
Tanner Fiez
Namita Kumar
Shreya Chakrabarti
35
1
0
31 Dec 2024
Causality Pursuit from Heterogeneous Environments via Neural Adversarial Invariance Learning
Yihong Gu
Cong Fang
Peter Bühlmann
Jianqing Fan
CML
OOD
67
2
0
31 Dec 2024
Distilling interpretable causal trees from causal forests
Patrick Rehill
CML
28
0
0
02 Aug 2024
Humas: A Heterogeneity- and Upgrade-aware Microservice Auto-scaling Framework in Large-scale Data Centers
Qin Hua
Dingyu Yang
Shiyou Qian
Jian Cao
Guangtao Xue
Minglu Li
34
1
0
22 Jun 2024
C-Learner: Constrained Learning for Causal Inference and Semiparametric Statistics
T. Cai
Yuri Fonseca
Kaiwen Hou
Hongseok Namkoong
CML
25
1
0
15 May 2024
Differentiable Pareto-Smoothed Weighting for High-Dimensional Heterogeneous Treatment Effect Estimation
Yoichi Chikahara
Kansei Ushiyama
27
0
0
26 Apr 2024
Triple/Debiased Lasso for Statistical Inference of Conditional Average Treatment Effects
Masahiro Kato
CML
31
1
0
05 Mar 2024
Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation
Jikai Jin
Vasilis Syrgkanis
CML
67
1
0
22 Feb 2024
Extrapolation-Aware Nonparametric Statistical Inference
Niklas Pfister
Peter Buhlmann
21
4
0
15 Feb 2024
Instrumental Variable Estimation for Causal Inference in Longitudinal Data with Time-Dependent Latent Confounders
Debo Cheng
Ziqi Xu
Jiuyong Li
Lin Liu
Jixue Liu
Wentao Gao
T. Le
CML
36
6
0
12 Dec 2023
The impact of heteroskedasticity on uplift modeling
B. Bokelmann
Stefan Lessmann
21
0
0
08 Dec 2023
Causal Dynamic Variational Autoencoder for Counterfactual Regression in Longitudinal Data
Mouad El Bouchattaoui
Myriam Tami
Benoit Lepetit
P. Cournède
CML
OOD
58
2
0
16 Oct 2023
A Semiparametric Instrumented Difference-in-Differences Approach to Policy Learning
Pan Zhao
Yifan Cui
CML
26
1
0
14 Oct 2023
Model-free selective inference under covariate shift via weighted conformal p-values
Ying Jin
Emmanuel J. Candès
23
15
0
18 Jul 2023
Should I Stop or Should I Go: Early Stopping with Heterogeneous Populations
Hammaad Adam
Fan Yin
Huibin
Mary Hu
Neil A. Tenenholtz
Lorin Crawford
Lester W. Mackey
Allison Koenecke
22
1
0
20 Jun 2023
Maximally Machine-Learnable Portfolios
Philippe Goulet Coulombe
Maximilian Göbel
21
3
0
08 Jun 2023
Data-OOB: Out-of-bag Estimate as a Simple and Efficient Data Value
Yongchan Kwon
James Y. Zou
TDI
FedML
31
35
0
16 Apr 2023
Linking a predictive model to causal effect estimation
Jiuyong Li
Lin Liu
Ziqi Xu
Ha Xuan Tran
T. Le
Jixue Liu
CML
20
0
0
10 Apr 2023
A new methodology to predict the oncotype scores based on clinico-pathological data with similar tumor profiles
Z. A. Masry
Romain Pic
Clément Dombry
Chrisine Devalland
19
6
0
13 Mar 2023
Confidence and Uncertainty Assessment for Distributional Random Forests
Jeffrey Näf
Corinne Emmenegger
Peter Buhlmann
N. Meinshausen
30
3
0
11 Feb 2023
Causal Inference Based Single-branch Ensemble Trees For Uplift Modeling
Fanglan Zheng
Menghan Wang
Kun Li
Jiang Tian
Xiaojia Xiang
CML
16
0
0
03 Feb 2023
How to select predictive models for causal inference?
M. Doutreligne
Gaël Varoquaux
ELM
CML
21
2
0
01 Feb 2023
Proximal Causal Learning of Conditional Average Treatment Effects
Erik Sverdrup
Yifan Cui
CML
21
4
0
26 Jan 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
19
1
0
16 Jan 2023
Debiased machine learning for estimating the causal effect of urban traffic on pedestrian crossing behaviour
K. Kamal
Bilal Farooq
33
3
0
21 Dec 2022
Criteria for Classifying Forecasting Methods
Tim Januschowski
Jan Gasthaus
Bernie Wang
David Salinas
Valentin Flunkert
Michael Bohlke-Schneider
Laurent Callot
AI4TS
21
173
0
07 Dec 2022
A Double Machine Learning Trend Model for Citizen Science Data
Daniel Fink
A. Johnston
Matthew Strimas‐Mackey
T. Auer
W. Hochachka
...
Lauren Oldham Jaromczyk
O. Robinson
Christopher Wood
S. Kelling
A. Rodewald
16
15
0
27 Oct 2022
Positive-Unlabeled Learning using Random Forests via Recursive Greedy Risk Minimization
Jo Wilton
Abigail M. Y. Koay
R. Ko
Miao Xu
N. Ye
13
13
0
16 Oct 2022
Falsification before Extrapolation in Causal Effect Estimation
Zeshan Hussain
Michael Oberst
M. Shih
David Sontag
CML
37
8
0
27 Sep 2022
Stochastic Tree Ensembles for Estimating Heterogeneous Effects
Nikolay M. Krantsevich
Jingyu He
P. R. Hahn
CML
27
13
0
15 Sep 2022
The Infinitesimal Jackknife and Combinations of Models
Indrayudh Ghosal
Yunzhe Zhou
Giles Hooker
28
4
0
31 Aug 2022
A Recursive Partitioning Approach for Dynamic Discrete Choice Modeling in High Dimensional Settings
E. Barzegary
Hema Yoganarasimhan
13
0
0
02 Aug 2022
FACT: High-Dimensional Random Forests Inference
Chien-Ming Chi
Yingying Fan
Jinchi Lv
27
2
0
04 Jul 2022
What Makes Forest-Based Heterogeneous Treatment Effect Estimators Work?
Susanne Dandl
Torsten Hothorn
H. Seibold
Erik Sverdrup
Stefan Wager
A. Zeileis
CML
34
11
0
21 Jun 2022
A review of machine learning concepts and methods for addressing challenges in probabilistic hydrological post-processing and forecasting
Georgia Papacharalampous
Hristos Tyralis
AI4CE
27
28
0
17 Jun 2022
Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
Jonathan Crabbé
Alicia Curth
Ioana Bica
M. Schaar
CML
20
15
0
16 Jun 2022
Image-based Treatment Effect Heterogeneity
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
24
20
0
13 Jun 2022
Efficient Heterogeneous Treatment Effect Estimation With Multiple Experiments and Multiple Outcomes
Leon Yao
Caroline Lo
Israel Nir
S. Tan
Ariel Evnine
Adam Lerer
A. Peysakhovich
CML
21
6
0
10 Jun 2022
Discovering Ancestral Instrumental Variables for Causal Inference from Observational Data
Debo Cheng
Jiuyong Li
Lin Liu
Kui Yu
Thuc Duy Lee
Hefei University of Technology
CML
14
13
0
04 Jun 2022
Robust and Agnostic Learning of Conditional Distributional Treatment Effects
Nathan Kallus
M. Oprescu
CML
OOD
35
10
0
23 May 2022
Neuroevolutionary Feature Representations for Causal Inference
Michael C. Burkhart
Gabriel Ruiz
CML
OOD
16
2
0
21 May 2022
Flexible Modeling and Multitask Learning using Differentiable Tree Ensembles
Shibal Ibrahim
Hussein Hazimeh
Rahul Mazumder
34
4
0
19 May 2022
Towards assessing agricultural land suitability with causal machine learning
Georgios Giannarakis
Vasileios Sitokonstantinou
R. Lorilla
C. Kontoes
CML
18
20
0
27 Apr 2022
Learning Optimal Dynamic Treatment Regimes Using Causal Tree Methods in Medicine
Theresa Blümlein
Joel Persson
Stefan Feuerriegel
CML
27
11
0
14 Apr 2022
1
2
Next