Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.02995
Cited By
Extrapolation and learning equations
10 October 2016
Georg Martius
Christoph H. Lampert
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Extrapolation and learning equations"
40 / 90 papers shown
Title
Toward Physically Plausible Data-Driven Models: A Novel Neural Network Approach to Symbolic Regression
Jiří Kubalík
Erik Derner
Robert Babuška
69
12
0
01 Feb 2023
The Lost Art of Mathematical Modelling
Linnéa Gyllingberg
Abeba Birhane
D. Sumpter
19
8
0
19 Jan 2023
Symbolic expression generation via Variational Auto-Encoder
Sergei Popov
Mikhail Lazarev
V. Belavin
D. Derkach
Andrey Ustyuzhanin
DRL
72
5
0
15 Jan 2023
Learning and Extrapolation of Robotic Skills using Task-Parameterized Equation Learner Networks
Hector M. Perez-Villeda
J. Piater
Matteo Saveriano
33
9
0
16 Dec 2022
Quant 4.0: Engineering Quantitative Investment with Automated, Explainable and Knowledge-driven Artificial Intelligence
Jian Guo
Saizhuo Wang
L. Ni
H. Shum
AIFin
95
8
0
13 Dec 2022
Interpretability and accessibility of machine learning in selected food processing, agriculture and health applications
N. Ranasinghe
A. Ramanan
S. Fernando
P. N. Hameed
D. Herath
T. Malepathirana
P. Suganthan
M. Niranjan
Saman K. Halgamuge
31
2
0
30 Nov 2022
Interpretable Scientific Discovery with Symbolic Regression: A Review
N. Makke
Sanjay Chawla
127
115
0
20 Nov 2022
Improving the Robustness of Neural Multiplication Units with Reversible Stochasticity
Bhumika Mistry
K. Farrahi
Jonathon S. Hare
AAML
40
0
0
10 Nov 2022
DISCOVER: Deep identification of symbolically concise open-form PDEs via enhanced reinforcement-learning
Mengge Du
Yuntian Chen
Dong-juan Zhang
58
0
0
04 Oct 2022
Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a Polynomial Net Study
Yongtao Wu
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
Volkan Cevher
85
11
0
16 Sep 2022
Deep Learning and Symbolic Regression for Discovering Parametric Equations
Michael Zhang
Samuel Kim
Peter Y. Lu
M. Soljavcić
72
21
0
01 Jul 2022
CoNSoLe: Convex Neural Symbolic Learning
Haoran Li
Yang Weng
Hanghang Tong
86
9
0
01 Jun 2022
SymFormer: End-to-end symbolic regression using transformer-based architecture
Martin Vastl
Jonáš Kulhánek
Jiří Kubalík
Erik Derner
Robert Babuška
114
51
0
31 May 2022
GSR: A Generalized Symbolic Regression Approach
Tony Tohme
Dehong Liu
K. Youcef-Toumi
99
14
0
31 May 2022
Taylor Genetic Programming for Symbolic Regression
Baihe He
Qiang Lu
Qingyun Yang
Jake Luo
Zhiguang Wang
59
31
0
28 Apr 2022
End-to-end symbolic regression with transformers
Pierre-Alexandre Kamienny
Stéphane dÁscoli
Guillaume Lample
Franccois Charton
108
178
0
22 Apr 2022
Discovering Governing Equations by Machine Learning implemented with Invariance
Chao Chen
Xiaowei Jin
Hui Li
PINN
AI4CE
39
1
0
29 Mar 2022
AI Descartes: Combining Data and Theory for Derivable Scientific Discovery
Cristina Cornelio
S. Dash
V. Austel
Tyler R. Josephson
Joao Goncalves
K. Clarkson
N. Megiddo
Bachir El Khadir
L. Horesh
AI4CE
96
7
0
03 Sep 2021
Inferring the Structure of Ordinary Differential Equations
Juliane Weilbach
S. Gerwinn
Christian D. Weilbach
M. Kandemir
59
3
0
05 Jul 2021
Physics-Guided Deep Learning for Dynamical Systems: A Survey
Rui Wang
Rose Yu
AI4CE
PINN
109
69
0
02 Jul 2021
SymbolicGPT: A Generative Transformer Model for Symbolic Regression
Mojtaba Valipour
Bowen You
Maysum Panju
A. Ghodsi
67
95
0
27 Jun 2021
Neural Symbolic Regression that Scales
Luca Biggio
Tommaso Bendinelli
Alexander Neitz
Aurelien Lucchi
Giambattista Parascandolo
105
180
0
11 Jun 2021
Informed Equation Learning
M. Werner
Andrej Junginger
Philipp Hennig
Georg Martius
64
14
0
13 May 2021
Physics-informed Spline Learning for Nonlinear Dynamics Discovery
Fangzheng Sun
Yang Liu
Hao Sun
AI4CE
67
28
0
05 May 2021
Toward Neural-Network-Guided Program Synthesis and Verification
N. Kobayashi
Taro Sekiyama
Issei Sato
Hiroshi Unno
NAI
101
3
0
17 Mar 2021
A Primer for Neural Arithmetic Logic Modules
Bhumika Mistry
K. Farrahi
Jonathon S. Hare
33
8
0
23 Jan 2021
Learning Symbolic Expressions via Gumbel-Max Equation Learner Networks
Gang Chen
42
9
0
12 Dec 2020
Estimating Multiplicative Relations in Neural Networks
Bhaavan Goel
22
0
0
28 Oct 2020
Extrapolating false alarm rates in automatic speaker verification
A. Sholokhov
Tomi Kinnunen
Ville Vestman
Kong Aik Lee
34
1
0
08 Aug 2020
OccamNet: A Fast Neural Model for Symbolic Regression at Scale
Owen Dugan
Rumen Dangovski
Allan dos Santos Costa
Samuel Kim
Pawan Goyal
J. Jacobson
M. Soljavcić
95
11
0
16 Jul 2020
Discovering Symbolic Models from Deep Learning with Inductive Biases
M. Cranmer
Alvaro Sanchez-Gonzalez
Peter W. Battaglia
Rui Xu
Kyle Cranmer
D. Spergel
S. Ho
AI4CE
96
483
0
19 Jun 2020
Neural Status Registers
Lukas Faber
Roger Wattenhofer
35
9
0
15 Apr 2020
A theory of independent mechanisms for extrapolation in generative models
M. Besserve
Rémy Sun
Dominik Janzing
Bernhard Schölkopf
85
26
0
01 Apr 2020
Data-Driven Discovery of Coarse-Grained Equations
Joseph Bakarji
D. Tartakovsky
107
32
0
30 Jan 2020
Integration of Neural Network-Based Symbolic Regression in Deep Learning for Scientific Discovery
Samuel Kim
Peter Y. Lu
Srijon Mukherjee
M. Gilbert
Li Jing
V. Ceperic
Marin Soljacic
69
171
0
10 Dec 2019
Visual Physics: Discovering Physical Laws from Videos
Pradyumna Chari
Chinmay Talegaonkar
Yunhao Ba
A. Kadambi
PINN
41
10
0
27 Nov 2019
The autofeat Python Library for Automated Feature Engineering and Selection
F. Horn
R. Pack
M. Rieger
127
98
0
22 Jan 2019
PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network
Zichao Long
Yiping Lu
Bin Dong
AI4CE
89
553
0
30 Nov 2018
Learning Equations for Extrapolation and Control
Subham S. Sahoo
Christoph H. Lampert
Georg Martius
79
237
0
19 Jun 2018
Combining Learned and Analytical Models for Predicting Action Effects from Sensory Data
Alina Kloss
S. Schaal
Jeannette Bohg
80
86
0
11 Oct 2017
Previous
1
2