Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1610.04210
Cited By
Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation
13 October 2016
S. Bahmani
J. Romberg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Phase Retrieval Meets Statistical Learning Theory: A Flexible Convex Relaxation"
11 / 11 papers shown
Title
Stochastic Light Field Holography
Florian Schiffers
Praneeth Chakravarthula
N. Matsuda
Grace Kuo
Ethan Tseng
Douglas Lanman
Felix Heide
O. Cossairt
11
5
0
12 Jul 2023
Misspecified Phase Retrieval with Generative Priors
Zhaoqiang Liu
Xinshao Wang
Jiulong Liu
38
4
0
11 Oct 2022
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
29
165
0
15 Dec 2020
Deep S
3
^3
3
PR: Simultaneous Source Separation and Phase Retrieval Using Deep Generative Models
Christopher A. Metzler
Gordon Wetzstein
20
11
0
14 Feb 2020
Online Stochastic Gradient Descent with Arbitrary Initialization Solves Non-smooth, Non-convex Phase Retrieval
Yan Shuo Tan
Roman Vershynin
19
35
0
28 Oct 2019
prDeep: Robust Phase Retrieval with a Flexible Deep Network
Christopher A. Metzler
Philip Schniter
Ashok Veeraraghavan
Richard G. Baraniuk
OOD
31
168
0
01 Mar 2018
A Precise Analysis of PhaseMax in Phase Retrieval
Fariborz Salehi
Ehsan Abbasi
B. Hassibi
14
22
0
20 Jan 2018
Lifting high-dimensional nonlinear models with Gaussian regressors
Christos Thrampoulidis
A. S. Rawat
10
8
0
11 Dec 2017
Blind Gain and Phase Calibration via Sparse Spectral Methods
Yanjun Li
Kiryung Lee
Y. Bresler
19
27
0
30 Nov 2017
Solving Almost all Systems of Random Quadratic Equations
G. Wang
G. Giannakis
Y. Saad
Jie Chen
26
25
0
29 May 2017
Phase Transitions of Spectral Initialization for High-Dimensional Nonconvex Estimation
Yue M. Lu
Gen Li
15
89
0
21 Feb 2017
1