ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.04658
  4. Cited By
Simultaneous Learning of Trees and Representations for Extreme
  Classification and Density Estimation

Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation

14 October 2016
Yacine Jernite
A. Choromańska
David Sontag
ArXivPDFHTML

Papers citing "Simultaneous Learning of Trees and Representations for Extreme Classification and Density Estimation"

4 / 4 papers shown
Title
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel
  Classification
sigmoidF1: A Smooth F1 Score Surrogate Loss for Multilabel Classification
Gabriel Bénédict
Vincent Koops
Daan Odijk
Maarten de Rijke
27
30
0
24 Aug 2021
On the computational complexity of the probabilistic label tree
  algorithms
On the computational complexity of the probabilistic label tree algorithms
R. Busa-Fekete
Krzysztof Dembczyñski
Alexander Golovnev
Kalina Jasinska
Mikhail Kuznetsov
M. Sviridenko
Chao Xu
TPM
24
3
0
01 Jun 2019
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Shanshan Wu
A. Dimakis
Sujay Sanghavi
Felix X. Yu
D. Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
SSL
17
53
0
26 Jun 2018
Efficient Loss-Based Decoding on Graphs For Extreme Classification
Efficient Loss-Based Decoding on Graphs For Extreme Classification
Itay Evron
E. Moroshko
K. Crammer
14
14
0
08 Mar 2018
1