ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.07524
616
2225

Fair prediction with disparate impact: A study of bias in recidivism prediction instruments

24 October 2016
Alexandra Chouldechova
    FaML
ArXiv (abs)PDFHTML
Abstract

Recidivism prediction instruments provide decision makers with an assessment of the likelihood that a criminal defendant will reoffend at a future point in time. While such instruments are gaining increasing popularity across the country, their use is attracting tremendous controversy. Much of the controversy concerns potential discriminatory bias in the risk assessments that are produced. This paper discusses a fairness criterion originating in the field of educational and psychological testing that has recently been applied to assess the fairness of recidivism prediction instruments. We demonstrate how adherence to the criterion may lead to considerable disparate impact when recidivism prevalence differs across groups.

View on arXiv
Comments on this paper