ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1610.08623
  4. Cited By
Poisson intensity estimation with reproducing kernels
v1v2v3 (latest)

Poisson intensity estimation with reproducing kernels

27 October 2016
Seth Flaxman
Yee Whye Teh
Dino Sejdinovic
ArXiv (abs)PDFHTML

Papers citing "Poisson intensity estimation with reproducing kernels"

21 / 21 papers shown
Title
K$^2$IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
K2^22IE: Kernel Method-based Kernel Intensity Estimators for Inhomogeneous Poisson Processes
Hideaki Kim
Tomoharu Iwata
Akinori Fujino
23
0
0
30 May 2025
Squared families: Searching beyond regular probability models
Squared families: Searching beyond regular probability models
Russell Tsuchida
Jiawei Liu
Cheng Soon Ong
Dino Sejdinovic
68
0
0
27 Mar 2025
Nonparametric estimation of Hawkes processes with RKHSs
Nonparametric estimation of Hawkes processes with RKHSs
Anna Bonnet
Maxime Sangnier
99
0
0
01 Nov 2024
Nonstationary Sparse Spectral Permanental Process
Nonstationary Sparse Spectral Permanental Process
Zicheng Sun
Yixuan Zhang
Zenan Ling
Xuhui Fan
Feng Zhou
36
0
0
04 Oct 2024
Exact, Fast and Expressive Poisson Point Processes via Squared Neural
  Families
Exact, Fast and Expressive Poisson Point Processes via Squared Neural Families
Russell Tsuchida
Cheng Soon Ong
Dino Sejdinovic
59
5
0
14 Feb 2024
Bayesian Optimization through Gaussian Cox Process Models for
  Spatio-temporal Data
Bayesian Optimization through Gaussian Cox Process Models for Spatio-temporal Data
Yongsheng Mei
Mahdi Imani
Tian-Shing Lan
GP
80
5
0
25 Jan 2024
Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature
  and Bayesian Optimization
Kernelized Normalizing Constant Estimation: Bridging Bayesian Quadrature and Bayesian Optimization
Xu Cai
Jonathan Scarlett
58
0
0
11 Jan 2024
Squared Neural Families: A New Class of Tractable Density Models
Squared Neural Families: A New Class of Tractable Density Models
Russell Tsuchida
Cheng Soon Ong
Dino Sejdinovic
TPM
63
12
0
22 May 2023
Sensing Cox Processes via Posterior Sampling and Positive Bases
Sensing Cox Processes via Posterior Sampling and Positive Bases
Mojmír Mutný
Andreas Krause
46
5
0
21 Oct 2021
Spatio-temporal extreme event modeling of terror insurgencies
Spatio-temporal extreme event modeling of terror insurgencies
Lekha Patel
L. Shand
J. D. Tucker
G. Huerta
19
3
0
15 Oct 2021
Sparse Representations of Positive Functions via First and Second-Order
  Pseudo-Mirror Descent
Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent
A. Chakraborty
K. Rajawat
Alec Koppel
44
3
0
13 Nov 2020
Additive Poisson Process: Learning Intensity of Higher-Order Interaction
  in Stochastic Processes
Additive Poisson Process: Learning Intensity of Higher-Order Interaction in Stochastic Processes
S. Luo
Feng Zhou
Lamiae Azizi
M. Sugiyama
134
0
0
16 Jun 2020
All your loss are belong to Bayes
All your loss are belong to Bayes
Christian J. Walder
Richard Nock
61
5
0
08 Jun 2020
Hard Shape-Constrained Kernel Machines
Hard Shape-Constrained Kernel Machines
Pierre-Cyril Aubin-Frankowski
Z. Szabó
62
22
0
26 May 2020
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Quantile Propagation for Wasserstein-Approximate Gaussian Processes
Rui Zhang
Christian J. Walder
Edwin V. Bonilla
Marian-Andrei Rizoiu
Lexing Xie
10
2
0
21 Dec 2019
Kernel Mean Embedding Based Hypothesis Tests for Comparing Spatial Point
  Patterns
Kernel Mean Embedding Based Hypothesis Tests for Comparing Spatial Point Patterns
Raif M. Rustamov
James T. Klosowski
39
7
0
31 May 2019
Efficient EM-Variational Inference for Hawkes Process
Efficient EM-Variational Inference for Hawkes Process
Feng Zhou
Zhidong Li
Xuhui Fan
Yang Wang
Arcot Sowmya
Fang Chen
35
8
0
29 May 2019
Efficient Non-parametric Bayesian Hawkes Processes
Efficient Non-parametric Bayesian Hawkes Processes
Rui Zhang
Christian J. Walder
Marian-Andrei Rizoiu
Lexing Xie
74
38
0
08 Oct 2018
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Efficient Bayesian Inference of Sigmoidal Gaussian Cox Processes
Christian Donner
Manfred Opper
89
36
0
02 Aug 2018
Large-Scale Cox Process Inference using Variational Fourier Features
Large-Scale Cox Process Inference using Variational Fourier Features
S. T. John
J. Hensman
59
31
0
03 Apr 2018
Nonparametric Hawkes Processes: Online Estimation and Generalization
  Bounds
Nonparametric Hawkes Processes: Online Estimation and Generalization Bounds
Yingxiang Yang
Jalal Etesami
Niao He
Negar Kiyavash
70
5
0
25 Jan 2018
1