ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.03383
  4. Cited By
Disentangling factors of variation in deep representations using
  adversarial training

Disentangling factors of variation in deep representations using adversarial training

10 November 2016
Michaël Mathieu
J. Zhao
Pablo Sprechmann
Aditya A. Ramesh
Yann LeCun
    DRL
    CML
ArXivPDFHTML

Papers citing "Disentangling factors of variation in deep representations using adversarial training"

8 / 58 papers shown
Title
Unsupervised Discovery of Object Landmarks as Structural Representations
Unsupervised Discovery of Object Landmarks as Structural Representations
Y. Zhang
Yijie Guo
Yixin Jin
Yijun Luo
Zhiyuan He
Honglak Lee
OCL
26
194
0
12 Apr 2018
Probabilistic Video Generation using Holistic Attribute Control
Probabilistic Video Generation using Holistic Attribute Control
Jiawei He
Andreas M. Lehrmann
Joseph Marino
Greg Mori
Leonid Sigal
VGen
DiffM
DRL
20
77
0
21 Mar 2018
Factorised spatial representation learning: application in
  semi-supervised myocardial segmentation
Factorised spatial representation learning: application in semi-supervised myocardial segmentation
A. Chartsias
T. Joyce
G. Papanastasiou
S. Semple
M. Williams
D. Newby
R. Dharmakumar
Sotirios A. Tsaftaris
DRL
48
69
0
19 Mar 2018
Music Style Transfer: A Position Paper
Music Style Transfer: A Position Paper
Shuqi Dai
Zheng-Wei Zhang
Gus G. Xia
17
49
0
19 Mar 2018
Unsupervised Visual Attribute Transfer with Reconfigurable Generative
  Adversarial Networks
Unsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks
Taeksoo Kim
Byoungjip Kim
Moonsu Cha
Jiwon Kim
GAN
24
41
0
31 Jul 2017
Guiding InfoGAN with Semi-Supervision
Guiding InfoGAN with Semi-Supervision
Adrian Spurr
Emre Aksan
Otmar Hilliges
GAN
34
46
0
14 Jul 2017
Fader Networks: Manipulating Images by Sliding Attributes
Fader Networks: Manipulating Images by Sliding Attributes
Guillaume Lample
Neil Zeghidour
Nicolas Usunier
Antoine Bordes
Ludovic Denoyer
MarcÁurelio Ranzato
DRL
GAN
26
543
0
01 Jun 2017
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial
  Networks
Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Jun-Yan Zhu
Taesung Park
Phillip Isola
Alexei A. Efros
GAN
61
5,553
0
30 Mar 2017
Previous
12