ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.07256
  4. Cited By
Adaptive Design of Experiments for Conservative Estimation of Excursion
  Sets
v1v2v3v4v5v6 (latest)

Adaptive Design of Experiments for Conservative Estimation of Excursion Sets

22 November 2016
Dario Azzimonti
D. Ginsbourger
C. Chevalier
Julien Bect
Y. Richet
ArXiv (abs)PDFHTML

Papers citing "Adaptive Design of Experiments for Conservative Estimation of Excursion Sets"

11 / 11 papers shown
Title
Triangulation candidates for Bayesian optimization
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
125
15
0
14 Dec 2021
Nearly Optimal Algorithms for Level Set Estimation
Nearly Optimal Algorithms for Level Set Estimation
Blake Mason
Romain Camilleri
Subhojyoti Mukherjee
Kevin Jamieson
Robert D. Nowak
Lalit P. Jain
80
23
0
02 Nov 2021
Uncertainty Quantification and Experimental Design for Large-Scale
  Linear Inverse Problems under Gaussian Process Priors
Uncertainty Quantification and Experimental Design for Large-Scale Linear Inverse Problems under Gaussian Process Priors
Cédric Travelletti
D. Ginsbourger
N. Linde
68
4
0
08 Sep 2021
Entropy-based adaptive design for contour finding and estimating
  reliability
Entropy-based adaptive design for contour finding and estimating reliability
D. Cole
R. Gramacy
James E. Warner
Geoffrey F. Bomarito
Patrick E. Leser
W. Leser
81
20
0
24 May 2021
Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with
  Error Certificates
Instance-Dependent Bounds for Zeroth-order Lipschitz Optimization with Error Certificates
François Bachoc
Tommaso Cesari
Sébastien Gerchinovitz
73
10
0
03 Feb 2021
Sequential design of multi-fidelity computer experiments: maximizing the
  rate of stepwise uncertainty reduction
Sequential design of multi-fidelity computer experiments: maximizing the rate of stepwise uncertainty reduction
Rémi Stroh
Julien Bect
S. Demeyer
N. Fischer
Damien Marquis
E. Vázquez
33
13
0
27 Jul 2020
Learning excursion sets of vector-valued Gaussian random fields for
  autonomous ocean sampling
Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling
T. Fossum
Cédric Travelletti
J. Eidsvik
D. Ginsbourger
K. Rajan
32
18
0
07 Jul 2020
Additive stacking for disaggregate electricity demand forecasting
Additive stacking for disaggregate electricity demand forecasting
Christian Capezza
B. Palumbo
Y. Goude
S. Wood
Matteo Fasiolo
AI4TS
85
7
0
20 May 2020
Forecast Evaluation of Quantiles, Prediction Intervals, and other
  Set-Valued Functionals
Forecast Evaluation of Quantiles, Prediction Intervals, and other Set-Valued Functionals
Tobias Fissler
Rafael Frongillo
Jana Hlavinová
Birgit Rudloff
49
18
0
16 Oct 2019
Evaluating Gaussian Process Metamodels and Sequential Designs for Noisy
  Level Set Estimation
Evaluating Gaussian Process Metamodels and Sequential Designs for Noisy Level Set Estimation
Xiong Lyu
M. Binois
M. Ludkovski
61
24
0
18 Jul 2018
A supermartingale approach to Gaussian process based sequential design
  of experiments
A supermartingale approach to Gaussian process based sequential design of experiments
Julien Bect
François Bachoc
D. Ginsbourger
114
78
0
03 Aug 2016
1