Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1611.07555
Cited By
Randomized Distributed Mean Estimation: Accuracy vs Communication
22 November 2016
Jakub Konecný
Peter Richtárik
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Randomized Distributed Mean Estimation: Accuracy vs Communication"
24 / 24 papers shown
Title
SacFL: Self-Adaptive Federated Continual Learning for Resource-Constrained End Devices
Zhengyi Zhong
Weidong Bao
Ji Wang
Jianguo Chen
Lingjuan Lyu
Wei Yang Bryan Lim
CLL
46
0
0
01 May 2025
Efficient Unbiased Sparsification
Leighton Barnes
Timothy Chow
Emma Cohen
Keith Frankston
Benjamin Howard
Fred Kochman
Daniel Scheinerman
Jeffrey VanderKam
OT
37
1
0
22 Feb 2024
Kimad: Adaptive Gradient Compression with Bandwidth Awareness
Jihao Xin
Ivan Ilin
Shunkang Zhang
Marco Canini
Peter Richtárik
37
2
0
13 Dec 2023
FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization
Qianyu Long
Christos Anagnostopoulos
S. P. Parambath
Daning Bi
AI4CE
FedML
23
2
0
13 Sep 2023
DoCoFL: Downlink Compression for Cross-Device Federated Learning
Ron Dorfman
S. Vargaftik
Y. Ben-Itzhak
Kfir Y. Levy
FedML
32
18
0
01 Feb 2023
CEDAS: A Compressed Decentralized Stochastic Gradient Method with Improved Convergence
Kun-Yen Huang
Shin-Yi Pu
35
9
0
14 Jan 2023
Adaptive Compression for Communication-Efficient Distributed Training
Maksim Makarenko
Elnur Gasanov
Rustem Islamov
Abdurakhmon Sadiev
Peter Richtárik
36
12
0
31 Oct 2022
Federated Learning Under Intermittent Client Availability and Time-Varying Communication Constraints
Mónica Ribero
H. Vikalo
G. Veciana
FedML
24
42
0
13 May 2022
Wyner-Ziv Gradient Compression for Federated Learning
Kai Liang
Huiru Zhong
Haoning Chen
Youlong Wu
FedML
23
8
0
16 Nov 2021
Bristle: Decentralized Federated Learning in Byzantine, Non-i.i.d. Environments
Joost Verbraeken
M. Vos
J. Pouwelse
31
4
0
21 Oct 2021
Leveraging Spatial and Temporal Correlations in Sparsified Mean Estimation
Divyansh Jhunjhunwala
Ankur Mallick
Advait Gadhikar
S. Kadhe
Gauri Joshi
24
10
0
14 Oct 2021
Communication-Efficient Federated Learning with Binary Neural Networks
YuZhi Yang
Zhaoyang Zhang
Qianqian Yang
FedML
32
31
0
05 Oct 2021
EDEN: Communication-Efficient and Robust Distributed Mean Estimation for Federated Learning
S. Vargaftik
Ran Ben-Basat
Amit Portnoy
Gal Mendelson
Y. Ben-Itzhak
Michael Mitzenmacher
FedML
46
45
0
19 Aug 2021
Slashing Communication Traffic in Federated Learning by Transmitting Clustered Model Updates
Laizhong Cui
Xiaoxin Su
Yipeng Zhou
Yi Pan
FedML
38
36
0
10 May 2021
MARINA: Faster Non-Convex Distributed Learning with Compression
Eduard A. Gorbunov
Konstantin Burlachenko
Zhize Li
Peter Richtárik
39
109
0
15 Feb 2021
On the Benefits of Multiple Gossip Steps in Communication-Constrained Decentralized Optimization
Abolfazl Hashemi
Anish Acharya
Rudrajit Das
H. Vikalo
Sujay Sanghavi
Inderjit Dhillon
20
7
0
20 Nov 2020
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
191
0
26 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
Uncertainty Principle for Communication Compression in Distributed and Federated Learning and the Search for an Optimal Compressor
M. Safaryan
Egor Shulgin
Peter Richtárik
29
60
0
20 Feb 2020
Federated Learning over Wireless Fading Channels
M. Amiri
Deniz Gunduz
33
507
0
23 Jul 2019
Natural Compression for Distributed Deep Learning
Samuel Horváth
Chen-Yu Ho
L. Horvath
Atal Narayan Sahu
Marco Canini
Peter Richtárik
21
151
0
27 May 2019
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
25
485
0
27 May 2018
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
Distributed Mean Estimation with Limited Communication
A. Suresh
Felix X. Yu
Sanjiv Kumar
H. B. McMahan
FedML
22
360
0
02 Nov 2016
1