ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.07800
17
79

Infinite Variational Autoencoder for Semi-Supervised Learning

23 November 2016
Ehsan Abbasnejad
A. Dick
A. Hengel
    BDL
    DRL
ArXivPDFHTML
Abstract

This paper presents an infinite variational autoencoder (VAE) whose capacity adapts to suit the input data. This is achieved using a mixture model where the mixing coefficients are modeled by a Dirichlet process, allowing us to integrate over the coefficients when performing inference. Critically, this then allows us to automatically vary the number of autoencoders in the mixture based on the data. Experiments show the flexibility of our method, particularly for semi-supervised learning, where only a small number of training samples are available.

View on arXiv
Comments on this paper