ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1611.09051
20
1

Deep, Dense, and Low-Rank Gaussian Conditional Random Fields

28 November 2016
Siddhartha Chandra
Iasonas Kokkinos
    BDL
ArXivPDFHTML
Abstract

In this work we introduce a fully-connected graph structure in the Deep Gaussian Conditional Random Field (G-CRF) model. For this we express the pairwise interactions between pixels as the inner-products of low-dimensional embeddings, delivered by a new subnetwork of a deep architecture. We efficiently minimize the resulting energy by solving the resulting low-rank linear system with conjugate gradients, and derive an analytic expression for the gradient of our embeddings which allows us to train them end-to-end with backpropagation. We demonstrate the merit of our approach by achieving state of the art results on three challenging Computer Vision benchmarks, namely semantic segmentation, human parts segmentation, and saliency estimation. Our implementation is fully GPU based, built on top of the Caffe library, and will be made publicly available.

View on arXiv
Comments on this paper