ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00374
  4. Cited By
Spatial Decompositions for Large Scale SVMs
v1v2 (latest)

Spatial Decompositions for Large Scale SVMs

1 December 2016
P. Thomann
Ingrid Blaschzyk
Mona Meister
Ingo Steinwart
ArXiv (abs)PDFHTML

Papers citing "Spatial Decompositions for Large Scale SVMs"

7 / 7 papers shown
Title
Intrinsic Dimension Adaptive Partitioning for Kernel Methods
Intrinsic Dimension Adaptive Partitioning for Kernel Methods
Thomas Hamm
Ingo Steinwart
33
3
0
16 Jul 2021
Gradient Boosted Binary Histogram Ensemble for Large-scale Regression
Gradient Boosted Binary Histogram Ensemble for Large-scale Regression
H. Hang
Tao Huang
Yuchao Cai
Hanfang Yang
Zhouchen Lin
33
5
0
03 Jun 2021
Total Stability of SVMs and Localized SVMs
Total Stability of SVMs and Localized SVMs
H. Köhler
A. Christmann
48
4
0
29 Jan 2021
Faster SVM Training via Conjugate SMO
Faster SVM Training via Conjugate SMO
Alberto Torres-Barrán
Carlos M. Alaíz
José R. Dorronsoro
38
27
0
19 Mar 2020
Improved Classification Rates for Localized SVMs
Improved Classification Rates for Localized SVMs
Ingrid Blaschzyk
Ingo Steinwart
34
5
0
04 May 2019
liquidSVM: A Fast and Versatile SVM package
liquidSVM: A Fast and Versatile SVM package
Ingo Steinwart
P. Thomann
VLM
69
39
0
22 Feb 2017
Distributed learning with regularized least squares
Distributed learning with regularized least squares
Shaobo Lin
Xin Guo
Ding-Xuan Zhou
178
191
0
11 Aug 2016
1