ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.00686
  4. Cited By
Identifying and Categorizing Anomalies in Retinal Imaging Data

Identifying and Categorizing Anomalies in Retinal Imaging Data

2 December 2016
Philipp Seeböck
S. Waldstein
S. Klimscha
Bianca S. Gerendas
R. Donner
T. Schlegl
U. Schmidt-Erfurth
Georg Langs
    MedIm
ArXiv (abs)PDFHTML

Papers citing "Identifying and Categorizing Anomalies in Retinal Imaging Data"

17 / 17 papers shown
Title
Restricted Generative Projection for One-Class Classification and
  Anomaly Detection
Restricted Generative Projection for One-Class Classification and Anomaly Detection
Feng Xiao
Ruoyu Sun
Jicong Fan
UQCV
78
2
0
09 Jul 2023
Prototypical Residual Networks for Anomaly Detection and Localization
Prototypical Residual Networks for Anomaly Detection and Localization
H. Zhang
Zuxuan Wu
Ziyi Wang
Zhineng Chen
Yuwei Jiang
UQCVAI4TS
119
67
0
05 Dec 2022
Progressive GANomaly: Anomaly detection with progressively growing GANs
Progressive GANomaly: Anomaly detection with progressively growing GANs
Djennifer K. Madzia-Madzou
Hugo J. Kuijf
MedIm
45
2
0
08 Jun 2022
Focus Your Distribution: Coarse-to-Fine Non-Contrastive Learning for
  Anomaly Detection and Localization
Focus Your Distribution: Coarse-to-Fine Non-Contrastive Learning for Anomaly Detection and Localization
Ye Zheng
Xiang Wang
Rui Deng
Tianpeng Bao
Rui Zhao
Liwei Wu
OOD
83
65
0
09 Oct 2021
Multi-Perspective Anomaly Detection
Multi-Perspective Anomaly Detection
Peter Jakob
M. Madan
Tobias Schmid-Schirling
Abhinav Valada
26
13
0
20 May 2021
CutPaste: Self-Supervised Learning for Anomaly Detection and
  Localization
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li
Kihyuk Sohn
Jinsung Yoon
Tomas Pfister
SSLUQCV
99
790
0
08 Apr 2021
Student-Teacher Feature Pyramid Matching for Anomaly Detection
Student-Teacher Feature Pyramid Matching for Anomaly Detection
Guodong Wang
Shumin Han
Errui Ding
Di Huang
94
227
0
07 Mar 2021
ASC-Net : Adversarial-based Selective Network for Unsupervised Anomaly
  Segmentation
ASC-Net : Adversarial-based Selective Network for Unsupervised Anomaly Segmentation
Raunak Dey
Yi Hong
57
19
0
05 Mar 2021
Rethinking Assumptions in Deep Anomaly Detection
Rethinking Assumptions in Deep Anomaly Detection
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Klaus-Robert Muller
Marius Kloft
113
91
0
30 May 2020
Fast Distance-based Anomaly Detection in Images Using an Inception-like
  Autoencoder
Fast Distance-based Anomaly Detection in Images Using an Inception-like Autoencoder
Natasa Sarafijanovic-Djukic
Jesse Davis
77
25
0
12 Mar 2020
DROCC: Deep Robust One-Class Classification
DROCC: Deep Robust One-Class Classification
Sachin Goyal
Aditi Raghunathan
Moksh Jain
H. Simhadri
Prateek Jain
VLM
104
167
0
28 Feb 2020
An Alarm System For Segmentation Algorithm Based On Shape Model
An Alarm System For Segmentation Algorithm Based On Shape Model
Fengze Liu
Yingda Xia
Ke Wang
Alan Yuille
Daguang Xu
65
22
0
26 Mar 2019
Robust Image Segmentation Quality Assessment
Robust Image Segmentation Quality Assessment
Leixin Zhou
Wenxiang Deng
Xiaodong Wu
70
8
0
20 Mar 2019
Unsupervised Identification of Disease Marker Candidates in Retinal OCT
  Imaging Data
Unsupervised Identification of Disease Marker Candidates in Retinal OCT Imaging Data
Philipp Seeböck
S. Waldstein
S. Klimscha
Hrvoje Bogunović
T. Schlegl
Bianca S. Gerendas
R. Donner
U. Schmidt-Erfurth
Georg Langs
69
81
0
31 Oct 2018
DOPING: Generative Data Augmentation for Unsupervised Anomaly Detection
  with GAN
DOPING: Generative Data Augmentation for Unsupervised Anomaly Detection with GAN
Swee Kiat Lim
Yi Loo
Ngoc-Trung Tran
Ngai-Man Cheung
Gemma Roig
Yuval Elovici
46
117
0
23 Aug 2018
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain
  MR Images
Deep Autoencoding Models for Unsupervised Anomaly Segmentation in Brain MR Images
Christoph Baur
Benedikt Wiestler
Shadi Albarqouni
Nassir Navab
UQCVMedIm
57
443
0
12 Apr 2018
Unsupervised Anomaly Detection with Generative Adversarial Networks to
  Guide Marker Discovery
Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
T. Schlegl
Philipp Seeböck
S. Waldstein
U. Schmidt-Erfurth
Georg Langs
MedImGAN
119
2,237
0
17 Mar 2017
1