ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.01452
  4. Cited By
ImageNet pre-trained models with batch normalization

ImageNet pre-trained models with batch normalization

5 December 2016
Marcel Simon
E. Rodner
Joachim Denzler
    VLM
    SSeg
ArXivPDFHTML

Papers citing "ImageNet pre-trained models with batch normalization"

9 / 9 papers shown
Title
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural
  Networks
AutoQNN: An End-to-End Framework for Automatically Quantizing Neural Networks
Cheng Gong
Ye Lu
Surong Dai
Deng Qian
Chenkun Du
Tao Li
MQ
27
0
0
07 Apr 2023
Revisiting Pre-training in Audio-Visual Learning
Revisiting Pre-training in Audio-Visual Learning
Ruoxuan Feng
Wenke Xia
Di Hu
22
1
0
07 Feb 2023
MaxDropoutV2: An Improved Method to Drop out Neurons in Convolutional
  Neural Networks
MaxDropoutV2: An Improved Method to Drop out Neurons in Convolutional Neural Networks
C. F. G. Santos
Mateus Roder
L. A. Passos
João Paulo Papa
24
1
0
05 Mar 2022
Region attention and graph embedding network for occlusion objective
  class-based micro-expression recognition
Region attention and graph embedding network for occlusion objective class-based micro-expression recognition
Qi-rong Mao
Ling Zhou
Wenming Zheng
Xiuyan Shao
Xiaohua Huang
CVBM
13
2
0
13 Jul 2021
QUENN: QUantization Engine for low-power Neural Networks
QUENN: QUantization Engine for low-power Neural Networks
Miguel de Prado
Maurizio Denna
Luca Benini
Nuria Pazos
MQ
27
14
0
14 Nov 2018
Robust Place Categorization with Deep Domain Generalization
Robust Place Categorization with Deep Domain Generalization
Massimiliano Mancini
Samuel Rota Buló
Barbara Caputo
Elisa Ricci
OOD
13
55
0
30 May 2018
A systematic study of the class imbalance problem in convolutional
  neural networks
A systematic study of the class imbalance problem in convolutional neural networks
Mateusz Buda
A. Maki
Maciej Mazurowski
19
2,317
0
15 Oct 2017
Mixed Low-precision Deep Learning Inference using Dynamic Fixed Point
Mixed Low-precision Deep Learning Inference using Dynamic Fixed Point
Naveen Mellempudi
Abhisek Kundu
Dipankar Das
Dheevatsa Mudigere
Bharat Kaul
MQ
27
30
0
31 Jan 2017
Designing Deep Networks for Surface Normal Estimation
Designing Deep Networks for Surface Normal Estimation
X. Wang
David Fouhey
Abhinav Gupta
3DV
SSL
154
353
0
18 Nov 2014
1