ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.03663
  4. Cited By
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and
  Multilabel Classification

Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification

12 December 2016
Maksim Lapin
Matthias Hein
Bernt Schiele
ArXivPDFHTML

Papers citing "Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification"

6 / 6 papers shown
Title
Theoretical analysis and experimental validation of volume bias of soft
  Dice optimized segmentation maps in the context of inherent uncertainty
Theoretical analysis and experimental validation of volume bias of soft Dice optimized segmentation maps in the context of inherent uncertainty
J. Bertels
D. Robben
Dirk Vandermeulen
P. Suetens
22
19
0
08 Nov 2022
Rank-based Decomposable Losses in Machine Learning: A Survey
Rank-based Decomposable Losses in Machine Learning: A Survey
Shu Hu
Xin Wang
Siwei Lyu
21
32
0
18 Jul 2022
Long-tail learning via logit adjustment
Long-tail learning via logit adjustment
A. Menon
Sadeep Jayasumana
A. S. Rawat
Himanshu Jain
Andreas Veit
Sanjiv Kumar
10
681
0
14 Jul 2020
General Framework for Binary Classification on Top Samples
General Framework for Binary Classification on Top Samples
Lukáš Adam
V. Mácha
Václav Smídl
Tomás Pevný
14
5
0
25 Feb 2020
Multiclass Classification Calibration Functions
Multiclass Classification Calibration Functions
Bernardo Avila-Pires
Csaba Szepesvári
46
27
0
20 Sep 2016
MatConvNet - Convolutional Neural Networks for MATLAB
MatConvNet - Convolutional Neural Networks for MATLAB
Andrea Vedaldi
Karel Lenc
181
2,943
0
15 Dec 2014
1