ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.06623
  4. Cited By
Supervised Learning for Optimal Power Flow as a Real-Time Proxy

Supervised Learning for Optimal Power Flow as a Real-Time Proxy

IEEE PES Innovative Smart Grid Technologies Conference (ISGT), 2016
20 December 2016
Raphaël Canyasse
Gal Dalal
Shie Mannor
ArXiv (abs)PDFHTML

Papers citing "Supervised Learning for Optimal Power Flow as a Real-Time Proxy"

8 / 8 papers shown
A Physics-Informed Machine Learning for Electricity Markets: A NYISO
  Case Study
A Physics-Informed Machine Learning for Electricity Markets: A NYISO Case Study
Robert Ferrando
Laurent Pagnier
R. Mieth
Zhirui Liang
Y. Dvorkin
D. Bienstock
Michael Chertkov
147
9
0
31 Mar 2023
Machine Learning for Improved Gas Network Models in Coordinated Energy
  Systems
Machine Learning for Improved Gas Network Models in Coordinated Energy Systems
Adriano Arrigo
Mihály Dolányi
K. Bruninx
J. Toubeau
112
0
0
26 Sep 2022
Bucketized Active Sampling for Learning ACOPF
Bucketized Active Sampling for Learning ACOPFElectric power systems research (EPSR), 2022
Michael Klamkin
Mathieu Tanneau
Terrence W.K. Mak
Pascal Van Hentenryck
210
5
0
16 Aug 2022
Neural Predictive Control for the Optimization of Smart Grid Flexibility
  Schedules
Neural Predictive Control for the Optimization of Smart Grid Flexibility Schedules
S. D. Jongh
Sina Steinle
Anna Hlawatsch
F. Mueller
M. Suriyah
T. Leibfried
101
2
0
19 Aug 2021
A Meta-Learning Approach to the Optimal Power Flow Problem Under
  Topology Reconfigurations
A Meta-Learning Approach to the Optimal Power Flow Problem Under Topology Reconfigurations
Yexiang Chen
Ieee Subhash Lakshminarayana Senior Member
Carsten Maple
Ieee H. Vincent Poor Fellow
AI4CE
161
7
0
21 Dec 2020
Evaluating Machine Learning Models for the Fast Identification of
  Contingency Cases
Evaluating Machine Learning Models for the Fast Identification of Contingency Cases
Florian Schaefer
J. Menke
M. Braun
109
4
0
21 Aug 2020
Neural Networks for Encoding Dynamic Security-Constrained Optimal Power
  Flow
Neural Networks for Encoding Dynamic Security-Constrained Optimal Power Flow
Daniel Timon Viola
Andreas Venzke
George S. Misyris
Spyros Chatzivasileiadis
431
43
0
17 Mar 2020
Machine Learning for AC Optimal Power Flow
Machine Learning for AC Optimal Power Flow
Neel Guha
Zhecheng Wang
Matt Wytock
Arun Majumdar
AI4CE
131
75
0
19 Oct 2019
1