ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1612.06915
  4. Cited By
AIVAT: A New Variance Reduction Technique for Agent Evaluation in
  Imperfect Information Games
v1v2 (latest)

AIVAT: A New Variance Reduction Technique for Agent Evaluation in Imperfect Information Games

20 December 2016
Neil Burch
Martin Schmid
Matej Moravcík
Michael Bowling
ArXiv (abs)PDFHTML

Papers citing "AIVAT: A New Variance Reduction Technique for Agent Evaluation in Imperfect Information Games"

6 / 6 papers shown
Title
Empirical Validation of the Independent Chip Model
Empirical Validation of the Independent Chip Model
Juho Kim
23
0
0
30 May 2025
Combining Deep Reinforcement Learning and Search for
  Imperfect-Information Games
Combining Deep Reinforcement Learning and Search for Imperfect-Information Games
Noam Brown
A. Bakhtin
Adam Lerer
Qucheng Gong
141
134
0
27 Jul 2020
Low-Variance and Zero-Variance Baselines for Extensive-Form Games
Low-Variance and Zero-Variance Baselines for Extensive-Form Games
Trevor Davis
Martin Schmid
Michael Bowling
OffRL
80
19
0
22 Jul 2019
Double Neural Counterfactual Regret Minimization
Double Neural Counterfactual Regret Minimization
Hui Li
Kailiang Hu
Zhibang Ge
Tao Jiang
Yuan Qi
Le Song
71
52
0
27 Dec 2018
Variance Reduction in Monte Carlo Counterfactual Regret Minimization
  (VR-MCCFR) for Extensive Form Games using Baselines
Variance Reduction in Monte Carlo Counterfactual Regret Minimization (VR-MCCFR) for Extensive Form Games using Baselines
Martin Schmid
Neil Burch
Marc Lanctot
Matej Moravcík
Rudolf Kadlec
Michael Bowling
158
64
0
09 Sep 2018
Depth-Limited Solving for Imperfect-Information Games
Depth-Limited Solving for Imperfect-Information Games
Noam Brown
Tuomas Sandholm
Brandon Amos
77
81
0
21 May 2018
1